Evidence on Virtual Reality–Based Therapies for Psychiatric Disorders: Meta-Review of Meta-Analyses

Author:

Dellazizzo LauraORCID,Potvin StéphaneORCID,Luigi MimosaORCID,Dumais AlexandreORCID

Abstract

BackgroundAmong all diseases globally, mental illnesses are one of the major causes of burden. As many people are resistant to conventional evidence-based treatments, there is an unmet need for the implementation of novel mental health treatments. Efforts to increase the effectiveness and benefits of evidence-based psychotherapy in psychiatry have led to the emergence of virtual reality (VR)–based interventions. These interventions have shown a wide range of advantages over conventional psychotherapies. Currently, VR-based interventions have been developed mainly for anxiety-related disorders; however, they are also used for developmental disorders, severe mental disorders, and neurocognitive disorders.ObjectiveThis meta-review aims to summarize the current state of evidence on the efficacy of VR-based interventions for various psychiatric disorders by evaluating the quality of evidence provided by meta-analytical studies.MethodsA systematic search was performed using the following electronic databases: PubMed, PsycINFO, Web of Science, and Google Scholar (any time until February 2020). Meta-analyses were included as long as they quantitatively examined the efficacy of VR-based interventions for symptoms of a psychiatric disorder. To avoid overlap among meta-analyses, for each subanalysis included within this meta-review, only one analysis provided from one meta-analysis was selected based on the best quality of evidence.ResultsThe search retrieved 11 eligible meta-analyses. The quality of evidence varied from very low to moderate quality. Several reasons account for the lower quality evidence, such as a limited number of randomized controlled trials, lack of follow-up analysis or control group, and the presence of heterogeneity and publication bias. Nonetheless, evidence has shown that VR-based interventions for anxiety-related disorders display overall medium-to-large effects when compared with inactive controls but no significant difference when compared with standard evidence-based approaches. Preliminary data have highlighted that such effects appear to be sustained in time, and subjects may fare better than active controls. Neurocognitive disorders also appear to improve with VR-based approaches, with small effects being found for various clinical outcomes (eg, cognition, emotion). Finally, there are insufficient data to classify VR-based interventions as an evidence-based practice for social skills training in neurodevelopmental disorders and compliance among patients with schizophrenia.ConclusionsVR provides unlimited opportunities by tailoring approaches to specific complex problems and individualizing the intervention. However, VR-based interventions have not shown superiority compared with usual evidence-based treatments. Future VR-based interventions should focus on developing innovative approaches for complex and treatment-resistant symptoms that are difficult to address with traditional treatments. Future research should also aim to gain a better understanding of the potential factors that may mediate VR outcomes to improve treatment.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference96 articles.

1. BoseJHeddenSLLipariRNPark-LeeEKey Substance Use and Mental Health Indicators in the United States: Results from the 2017 National Survey on Drug Use and HealthSubstance Abuse and Mental Health Services Administration20182020-08-11https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHFFR2017/NSDUHFFR2017.htm

2. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States

3. Epidemiology of anxiety disorders in the 21st century

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3