Patients’ and Clinicians’ Perceived Trust in Internet-of-Things Systems to Support Asthma Self-management: Qualitative Interview Study

Author:

Hui Chi YanORCID,McKinstry BrianORCID,Fulton OliviaORCID,Buchner MarkORCID,Pinnock HilaryORCID

Abstract

Background Asthma affects 235 million people worldwide. Supported self-management, including an action plan agreed with clinicians, improves asthma outcomes. Internet-of-things (IoT) systems with artificial intelligence (AI) can provide customized support for a range of self-management functions, but trust is vital to encourage patients’ adoption of such systems. Many models for understanding trust exist, some explicitly designed for eHealth, but no studies have used these models to explore trust in the context of using IoT systems to support asthma self-management. Objective In this study, we aim to use the McKnight model to explore the functionality, helpfulness, and reliability domains of patients’ and clinicians’ trust in IoT systems to deliver the 14 components of self-management support defined by the PRISMS (Practical Reviews in Self-Management Support) taxonomy. Methods We used think-aloud techniques in semistructured interviews to explore the views of patients and clinicians. Patients were recruited from research registers and social media and purposively sampled to include a range of ages, genders, action plan ownership, asthma duration, hospital admissions, and experience with mobile apps. Clinicians (primary, secondary, and community-based) were recruited from professional networks. Interviews were transcribed verbatim, and thematic analysis was used to explore perceptions of the functionality, helpfulness, and reliability of IoT features to support components of supported self-management. Results A total of 12 patients and 12 clinicians were interviewed. Regarding perceived functionality, most patients considered that an IoT system had functionality that could support a broad range of self-management tasks. They wanted a system to provide customized advice involving AI. With regard to perceived helpfulness, they considered that IoT systems could usefully provide integrated support for a number of recognized components of self-management support. In terms of perceived reliability, they believed they could rely on the system to log their asthma condition and provide preset action plan advice triggered by their logs. However, they were less confident that the system could operate continuously and without errors in providing advice. They were not confident that AI could generate new advice or reach diagnostic conclusions without the interpretation of their trusted clinicians. Clinicians wanted clinical evidence before trusting the system. Conclusions IoT systems including AI were regarded as offering potentially helpful functionality in mediating the action plans developed with a trusted clinician, although our technologically adept participants were not yet ready to trust AI to generate novel advice. Research is needed to ensure that technological capability does not outstrip the trust of individuals using it.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference59 articles.

1. AsthmaWorld Health Organization20202021-02-28https://www.who.int/news-room/q-a-detail/asthma

2. The PRISMS taxonomy of self-management support: derivation of a novel taxonomy and initial testing of its utility

3. Systematic meta-review of supported self-management for asthma: a healthcare perspective

4. British Guideline on the Management of AsthmaBritish Thoracic Society/Scottish Intercollegiate Guideline Network20192021-02-28https://brit-thoracic.org.uk/quality-improvement/guidelines/asthma/

5. The Global Strategy for Asthma Management and Prevention (GINA)Global IFA20202021-02-28https://ginasthma.org/reports/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3