The Impact of Performance Expectancy, Workload, Risk, and Satisfaction on Trust in ChatGPT: Cross-Sectional Survey Analysis

Author:

Choudhury AvishekORCID,Shamszare HamidORCID

Abstract

Background ChatGPT (OpenAI) is a powerful tool for a wide range of tasks, from entertainment and creativity to health care queries. There are potential risks and benefits associated with this technology. In the discourse concerning the deployment of ChatGPT and similar large language models, it is sensible to recommend their use primarily for tasks a human user can execute accurately. As we transition into the subsequent phase of ChatGPT deployment, establishing realistic performance expectations and understanding users’ perceptions of risk associated with its use are crucial in determining the successful integration of this artificial intelligence (AI) technology. Objective The aim of the study is to explore how perceived workload, satisfaction, performance expectancy, and risk-benefit perception influence users’ trust in ChatGPT. Methods A semistructured, web-based survey was conducted with 607 adults in the United States who actively use ChatGPT. The survey questions were adapted from constructs used in various models and theories such as the technology acceptance model, the theory of planned behavior, the unified theory of acceptance and use of technology, and research on trust and security in digital environments. To test our hypotheses and structural model, we used the partial least squares structural equation modeling method, a widely used approach for multivariate analysis. Results A total of 607 people responded to our survey. A significant portion of the participants held at least a high school diploma (n=204, 33.6%), and the majority had a bachelor’s degree (n=262, 43.1%). The primary motivations for participants to use ChatGPT were for acquiring information (n=219, 36.1%), amusement (n=203, 33.4%), and addressing problems (n=135, 22.2%). Some participants used it for health-related inquiries (n=44, 7.2%), while a few others (n=6, 1%) used it for miscellaneous activities such as brainstorming, grammar verification, and blog content creation. Our model explained 64.6% of the variance in trust. Our analysis indicated a significant relationship between (1) workload and satisfaction, (2) trust and satisfaction, (3) performance expectations and trust, and (4) risk-benefit perception and trust. Conclusions The findings underscore the importance of ensuring user-friendly design and functionality in AI-based applications to reduce workload and enhance user satisfaction, thereby increasing user trust. Future research should further explore the relationship between risk-benefit perception and trust in the context of AI chatbots.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3