Using natural language processing and structured medical data to identify patients hospitalized due to COVID-19 (Preprint)

Author:

Chang Feier,Krishnan Jay,Hurst Jillian H,Yarrington Michael E,Anderson Deverick J,O'Brien Emily C,Goldstein Benjamin Alan

Abstract

BACKGROUND

Throughout the COVID-19 pandemic, many hospitals conducted routine testing of hospitalized patients for SARS-CoV-2 infection upon admission. Some of these patients are admitted for reasons unrelated to COVID-19, and incidentally test positive for the virus. Because COVID-19-related hospitalizations have become a critical public health indicator, it is important to identify patients who are hospitalized because of COVID-19 as opposed to those who were admitted for other indications.

OBJECTIVE

We compared the performance of different computable phenotype definitions for COVID-19 hospitalizations that use different types of data from the electronic health records (EHR), including structured EHR data elements, provider notes, or a combination of both data types.

METHODS

We conducted a retrospective data analysis utilizing chart review-based validation at a large academic medical center. We reviewed and analyzed the charts of 586 hospitalized individuals who tested positive for SARS-CoV-2 during January 2022. We used LASSO regression and Random Forests to fit classification algorithms that incorporated structured EHR data elements, provider notes, or a combination of structured data and provider notes. We used natural language processing to incorporate data from provider notes. The performance of each model was evaluated based on Area Under the Receiver Operator Characteristic (AUROC) and an associated decision rule based on sensitivity and positive predictive value. We also identified top words and clinical indicators of COVID-19-specific hospitalization and assessed the impact of different phenotyping strategies on estimated hospital outcome metrics.

RESULTS

Based on a chart review, 38% of 586 patients were determined to be hospitalized for reasons other than COVID-19 despite having tested positive for SARS-CoV-2. A classification algorithm that used provider notes had significantly better discrimination than one that used structured EHR data elements (AUROC: 0.894 vs 0.841, p < 0.001), and performed similarly to a model that combined provider notes with structured data elements (AUROC: 0.894 vs 0.893). Assessments of hospital outcome metrics significantly differed based on whether the population included all hospitalized patients who tested positive for SARS-CoV-2 versus those who were determined to have been hospitalized due to COVID-19.

CONCLUSIONS

These findings highlight the importance of cause-specific phenotyping for COVID-19 hospitalizations. More generally, this work demonstrates the utility of natural language processing approaches to derive information related to patient hospitalizations in cases where there may be multiple conditions that could serve as the primary indication for hospitalization.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3