An Electronic Clinical Decision Support System for the Management of Low Back Pain in Community Pharmacy: Development and Mixed Methods Feasibility Study (Preprint)

Author:

Downie Aron SimonORCID,Hancock MarkORCID,Abdel Shaheed ChristinaORCID,McLachlan Andrew JORCID,Kocaballi Ahmet BakiORCID,Williams Christopher MORCID,Michaleff Zoe AORCID,Maher Chris GORCID

Abstract

BACKGROUND

People with low back pain (LBP) in the community often do not receive evidence-based advice and management. Community pharmacists can play an important role in supporting people with LBP as pharmacists are easily accessible to provide first-line care. However, previous research suggests that pharmacists may not consistently deliver advice that is concordant with guideline recommendations and may demonstrate difficulty determining which patients require prompt medical review. A clinical decision support system (CDSS) may enhance first-line care of LBP, but none exists to support the community pharmacist–client consultation.

OBJECTIVE

This study aimed to develop a CDSS to guide first-line care of LBP in the community pharmacy setting and to evaluate the pharmacist-reported usability and acceptance of the prototype system.

METHODS

A cross-platform Web app for the Apple iPad was developed in conjunction with academic and clinical experts using an iterative user-centered design process during interface design, clinical reasoning, program development, and evaluation. The CDSS was evaluated via one-to-one user-testing with 5 community pharmacists (5 case vignettes each). Data were collected via video recording, screen capture, survey instrument (system usability scale), and direct observation.

RESULTS

Pharmacists’ agreement with CDSS-generated self-care recommendations was 90% (18/20), with medicines recommendations was 100% (25/25), and with referral advice was 88% (22/25; total 70 recommendations). Pharmacists expressed uncertainty when screening for serious pathology in 40% (10/25) of cases. Pharmacists requested more direction from the CDSS in relation to automated prompts for user input and page navigation. Overall system usability was rated as excellent (mean score 92/100, SD 6.5; 90th percentile compared with similar systems), with acceptance rated as good to excellent.

CONCLUSIONS

A novel CDSS (high-fidelity prototype) to enhance pharmacist care of LBP was developed, underpinned by clinical practice guidelines and informed by a multidisciplinary team of experts. User-testing revealed a high level of usability and acceptance of the prototype system, with suggestions to improve interface prompts and information delivery. The small study sample limits the generalizability of the findings but offers important insights to inform the next stage of system development.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3