Influenza Screening via Deep Learning Using a Combination of Epidemiological and Patient-Generated Health Data: Development and Validation Study (Preprint)

Author:

Choo HyunwooORCID,Kim MyeongchanORCID,Choi JiyunORCID,Shin JaewonORCID,Shin Soo-YongORCID

Abstract

BACKGROUND

Screening for influenza in primary care is challenging due to the low sensitivity of rapid antigen tests and the lack of proper screening tests.

OBJECTIVE

The aim of this study was to develop a machine learning–based screening tool using patient-generated health data (PGHD) obtained from a mobile health (mHealth) app.

METHODS

We trained a deep learning model based on a gated recurrent unit to screen influenza using PGHD, including each patient’s fever pattern and drug administration records. We used meteorological data and app-based surveillance of the weekly number of patients with influenza. We defined a single episode as the set of consecutive days, including the day the user was diagnosed with influenza or another disease. Any record a user entered 24 hours after his or her last record was considered to be the start of a new episode. Each episode contained data on the user’s age, gender, weight, and at least one body temperature record. The total number of episodes was 6657. Of these, there were 3326 episodes within which influenza was diagnosed. We divided these episodes into 80% training sets (2664/3330) and 20% test sets (666/3330). A 5-fold cross-validation was used on the training set.

RESULTS

We achieved reliable performance with an accuracy of 82%, a sensitivity of 84%, and a specificity of 80% in the test set. After the effect of each input variable was evaluated, app-based surveillance was observed to be the most influential variable. The correlation between the duration of input data and performance was not statistically significant (<i>P</i>=.09).

CONCLUSIONS

These findings suggest that PGHD from an mHealth app could be a complementary tool for influenza screening. In addition, PGHD, along with traditional clinical data, could be used to improve health conditions.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3