Global Research on Coronaviruses: An R Package (Preprint)

Author:

Warin ThierryORCID

Abstract

BACKGROUND

In these trying times, we developed an R package about bibliographic references on coronaviruses. Working with reproducible research principles based on open science, disseminating scientific information, providing easy access to scientific production on this particular issue, and offering a rapid integration in researchers’ workflows may help save time in this race against the virus, notably in terms of public health.

OBJECTIVE

The goal is to simplify the workflow of interested researchers, with multidisciplinary research in mind. With more than 60,500 medical bibliographic references at the time of publication, this package is among the largest about coronaviruses.

METHODS

This package could be of interest to epidemiologists, researchers in scientometrics, biostatisticians, as well as data scientists broadly defined. This package collects references from PubMed and organizes the data in a data frame. We then built functions to sort through this collection of references. Researchers can also integrate the data into their pipeline and implement them in R within their code libraries.

RESULTS

We provide a short use case in this paper based on a bibliometric analysis of the references made available by this package. Classification techniques can also be used to go through the large volume of references and allow researchers to save time on this part of their research. Network analysis can be used to filter the data set. Text mining techniques can also help researchers calculate similarity indices and help them focus on the parts of the literature that are relevant for their research.

CONCLUSIONS

This package aims at accelerating research on coronaviruses. Epidemiologists can integrate this package into their workflow. It is also possible to add a machine learning layer on top of this package to model the latest advances in research about coronaviruses, as we update this package daily. It is also the only one of this size, to the best of our knowledge, to be built in the R language.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3