Where No Universal Health Care Identifier Exists: Comparison and Determination of the Utility of Score-Based Persons Matching Algorithms Using Demographic Data (Preprint)

Author:

Waruru AnthonyORCID,Natukunda AgnesORCID,Nyagah Lilly MORCID,Kellogg Timothy AORCID,Zielinski-Gutierrez EmilyORCID,Waruiru WanjiruORCID,Masamaro KennethORCID,Harklerode RichelleORCID,Odhiambo JacobORCID,Manders Eric-JanORCID,Young Peter WORCID

Abstract

BACKGROUND

A universal health care identifier (UHID) facilitates the development of longitudinal medical records in health care settings where follow up and tracking of persons across health care sectors are needed. HIV case-based surveillance (CBS) entails longitudinal follow up of HIV cases from diagnosis, linkage to care and treatment, and is recommended for second generation HIV surveillance. In the absence of a UHID, records matching, linking, and deduplication may be done using score-based persons matching algorithms. We present a stepwise process of score-based persons matching algorithms based on demographic data to improve HIV CBS and other longitudinal data systems.

OBJECTIVE

The aim of this study is to compare deterministic and score-based persons matching algorithms in records linkage and matching using demographic data in settings without a UHID.

METHODS

We used HIV CBS pilot data from 124 facilities in 2 high HIV-burden counties (Siaya and Kisumu) in western Kenya. For efficient processing, data were grouped into 3 scenarios within (1) HIV testing services (HTS), (2) HTS-care, and (3) within care. In deterministic matching, we directly compared identifiers and pseudo-identifiers from medical records to determine matches. We used R stringdist package for Jaro, Jaro-Winkler score-based matching and Levenshtein, and Damerau-Levenshtein string edit distance calculation methods. For the Jaro-Winkler method, we used a penalty (р)=0.1 and applied 4 weights (ω) to Levenshtein and Damerau-Levenshtein: deletion ω=0.8, insertion ω=0.8, substitutions ω=1, and transposition ω=0.5.

RESULTS

We abstracted 12,157 cases of which 4073/12,157 (33.5%) were from HTS, 1091/12,157 (9.0%) from HTS-care, and 6993/12,157 (57.5%) within care. Using the deterministic process 435/12,157 (3.6%) duplicate records were identified, yielding 96.4% (11,722/12,157) unique cases. Overall, of the score-based methods, Jaro-Winkler yielded the most duplicate records (686/12,157, 5.6%) while Jaro yielded the least duplicates (546/12,157, 4.5%), and Levenshtein and Damerau-Levenshtein yielded 4.6% (563/12,157) duplicates. Specifically, duplicate records yielded by method were: (1) Jaro 5.7% (234/4073) within HTS, 0.4% (4/1091) in HTS-care, and 4.4% (308/6993) within care, (2) Jaro-Winkler 7.4% (302/4073) within HTS, 0.5% (6/1091) in HTS-care, and 5.4% (378/6993) within care, (3) Levenshtein 6.4% (262/4073) within HTS, 0.4% (4/1091) in HTS-care, and 4.2% (297/6993) within care, and (4) Damerau-Levenshtein 6.4% (262/4073) within HTS, 0.4% (4/1091) in HTS-care, and 4.2% (297/6993) within care.

CONCLUSIONS

Without deduplication, over reporting occurs across the care and treatment cascade. Jaro-Winkler score-based matching performed the best in identifying matches. A pragmatic estimate of duplicates in health care settings can provide a corrective factor for modeled estimates, for targeting and program planning. We propose that even without a UHID, standard national deduplication and persons-matching algorithm that utilizes demographic data would improve accuracy in monitoring HIV care clinical cascades.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3