Improving the Prognostic Evaluation Precision of Hospital Outcomes for Heart Failure Using Admission Notes and Clinical Tabular Data: Multimodal Deep Learning Model (Preprint)

Author:

Gao ZhenyueORCID,Liu XiaoliORCID,Kang YuORCID,Hu PanORCID,Zhang XiuORCID,Yan WeiORCID,Yan MuyangORCID,Yu PengmingORCID,Zhang QingORCID,Xiao WendongORCID,Zhang ZhengboORCID

Abstract

BACKGROUND

Clinical notes contain contextualized information beyond structured data related to patients’ past and current health status.

OBJECTIVE

This study aimed to design a multimodal deep learning approach to improve the evaluation precision of hospital outcomes for heart failure (HF) using admission clinical notes and easily collected tabular data.

METHODS

Data for the development and validation of the multimodal model were retrospectively derived from 3 open-access US databases, including the Medical Information Mart for Intensive Care III v1.4 (MIMIC-III) and MIMIC-IV v1.0, collected from a teaching hospital from 2001 to 2019, and the eICU Collaborative Research Database v1.2, collected from 208 hospitals from 2014 to 2015. The study cohorts consisted of all patients with critical HF. The clinical notes, including chief complaint, history of present illness, physical examination, medical history, and admission medication, as well as clinical variables recorded in electronic health records, were analyzed. We developed a deep learning mortality prediction model for in-hospital patients, which underwent complete internal, prospective, and external evaluation. The Integrated Gradients and SHapley Additive exPlanations (SHAP) methods were used to analyze the importance of risk factors.

RESULTS

The study included 9989 (16.4%) patients in the development set, 2497 (14.1%) patients in the internal validation set, 1896 (18.3%) in the prospective validation set, and 7432 (15%) patients in the external validation set. The area under the receiver operating characteristic curve of the models was 0.838 (95% CI 0.827-0.851), 0.849 (95% CI 0.841-0.856), and 0.767 (95% CI 0.762-0.772), for the internal, prospective, and external validation sets, respectively. The area under the receiver operating characteristic curve of the multimodal model outperformed that of the unimodal models in all test sets, and tabular data contributed to higher discrimination. The medical history and physical examination were more useful than other factors in early assessments.

CONCLUSIONS

The multimodal deep learning model for combining admission notes and clinical tabular data showed promising efficacy as a potentially novel method in evaluating the risk of mortality in patients with HF, providing more accurate and timely decision support.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3