Development of a Web-Based Crowdsourcing-Integrated Semantic Text Annotation Tool to Assist in Building a Mental Health Knowledge Base: User-Centered Design Approach (Preprint)

Author:

He XingORCID,Zhang HansiORCID,Bian JiangORCID

Abstract

BACKGROUND

One in five U.S. adults lives with some kind of mental health condition and 4.6% of all U.S. adults have a serious mental illness in 2018. The Internet has become the first place for these people to seek online mental health information for help. However, online mental health information is not well-organized and often of low quality. There have been efforts in building evidence-based mental health knowledgebases curated with information manually extracted from the high-quality scientific literature. Manual extraction is inefficient. Crowdsourcing can potentially be a low-cost mechanism to collect labeled data from non-expert laypeople. However, there is not an existing annotation tool integrated with popular crowdsourcing platforms to perform the information extraction tasks. In our previous work, we prototyped a Semantic Text Annotation Tool (STAT) to address this gap.

OBJECTIVE

We aimed to refine the STAT prototype (1) to improve its usability and (2) to enhance the crowdsourcing workflow efficiency to facilitate the construction of evidence-based mental health knowledgebase, following a user-centered design (UCD) process.

METHODS

Following UCD principles, we conducted four design iterations to improve the initial STAT prototype. In the first two iterations, usability testing focus groups were conducted internally with 8 participants recruited from a convenient sample, and the usability was evaluated with a modified System Usability Scale (SUS). In the following two iterations, usability testing was conducted externally using the Amazon Mechanical Turk (MTurk) platform. In each iteration, we summarized the usability testing results through thematic analysis, identified usability issues, and conducted a heuristic evaluation to map identified usability issues to Jakob Nielsen’s usability heuristics. We collected suggested improvements in each of the usability testing sessions and enhanced STAT accordingly in the next UCD iteration. After four UCD iterations, we conducted a case study of the system on MTurk using mental health related scientific literature. We compared the performance of crowdsourcing workers with two expert annotators from two aspects: efficiency and quality.

RESULTS

At the end of two initial internal UCD iterations, the SUS score increased from 70.3 ± 12.5 to 81.1 ± 9.8 after we improved STAT following the suggested improvements. We then evaluated STAT externally through MTurk in the following two iterations. The SUS score decreased to 55.7 ± 20.1 in the third iteration, probably because of the complexity of the tasks. After further simplification of STAT and the annotation tasks with an improved annotation guideline, the SUS score increased to 73.8 ± 13.8 in the fourth iteration of UCD. In the evaluation case study, on average, the workers spent 125.5 ± 69.2 seconds on the onboarding tutorial and the crowdsourcing workers spent significantly less time on the annotation tasks compared to the two experts. In terms of annotation quality, the workers’ annotation results achieved average F1-scores ranged from 0.62 to 0.84 for the different sentences.

CONCLUSIONS

We successfully developed a web-based semantic text annotation tool, STAT, to facilitate the curation of semantic web knowledgebases through four UCD iterations. The lessons learned from the UCD process could serve as a guide to further enhance STAT and the development and design of other crowdsourcing-based semantic text annotation tasks. Our study also showed that a well-organized, informative annotation guideline is as important as the annotation tool itself. Further, we learned that a crowdsourcing task should consist of multiple simple microtasks rather than a complicated task.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3