Development, Implementation, and Evaluation of a Personalized Machine Learning Algorithm for Clinical Decision Support: Case Study With Shingles Vaccination (Preprint)

Author:

Chen JiORCID,Chokshi SaraORCID,Hegde RoshiniORCID,Gonzalez JavierORCID,Iturrate EduardoORCID,Aphinyanaphongs YinORCID,Mann DevinORCID

Abstract

BACKGROUND

Although clinical decision support (CDS) alerts are effective reminders of best practices, their effectiveness is blunted by clinicians who fail to respond to an overabundance of inappropriate alerts. An electronic health record (EHR)–integrated machine learning (ML) algorithm is a potentially powerful tool to increase the signal-to-noise ratio of CDS alerts and positively impact the clinician’s interaction with these alerts in general.

OBJECTIVE

This study aimed to describe the development and implementation of an ML-based signal-to-noise optimization system (SmartCDS) to increase the <i>signal</i> of alerts by decreasing the volume of low-value herpes zoster (shingles) vaccination alerts.

METHODS

We built and deployed SmartCDS, which builds personalized user activity profiles to suppress shingles vaccination alerts unlikely to yield a clinician’s interaction. We extracted all records of shingles alerts from January 2017 to March 2019 from our EHR system, including 327,737 encounters, 780 providers, and 144,438 patients.

RESULTS

During the 6 weeks of pilot deployment, the SmartCDS system suppressed an average of 43.67% (15,425/35,315) potential shingles alerts (appointments) and maintained stable counts of weekly shingles vaccination orders (326.3 with system active vs 331.3 in the control group; <i>P</i>=.38) and weekly user-alert interactions (1118.3 with system active vs 1166.3 in the control group; <i>P</i>=.20).

CONCLUSIONS

All key statistics remained stable while the system was turned on. Although the results are promising, the characteristics of the system can be subject to future data shifts, which require automated logging and monitoring. We demonstrated that an automated, ML-based method and data architecture to suppress alerts are feasible without detriment to overall order rates. This work is the first alert suppression ML-based model deployed in practice and serves as foundational work in encounter-level customization of alert display to maximize effectiveness.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3