BACKGROUND
High dropout rates are a common problem reported in web-based studies. Understanding which risk factors interrelate with dropping out from the studies provides the option to prevent dropout by tailoring effective strategies.
OBJECTIVE
This study aims to contribute an understanding of the predictors of web-based study dropout among psychosomatic rehabilitation patients. We investigated whether sociodemographics, voluntary interventions, physical and mental health, digital use for health and rehabilitation, and COVID-19 pandemic–related variables determine study dropout.
METHODS
Patients (N=2155) recruited from 4 psychosomatic rehabilitation clinics in Germany filled in a web-based questionnaire at T1, which was before their rehabilitation stay. Approximately half of the patients (1082/2155, 50.21%) dropped out at T2, which was after the rehabilitation stay, before and during which 3 voluntary digital trainings were provided to them. According to the number of trainings that the patients participated in, they were categorized into a comparison group or 1 of 3 intervention groups. Chi-square tests were performed to examine the differences between dropout patients and retained patients in terms of sociodemographic variables and to compare the dropout rate differences between the comparison and intervention groups. Logistic regression analyses were used to assess what factors were related to study dropout.
RESULTS
The comparison group had the highest dropout rate of 68.4% (173/253) compared with the intervention groups’ dropout rates of 47.98% (749/1561), 50% (96/192), and 42.9% (64/149). Patients with a diagnosis of combined anxiety and depressive disorder had the highest dropout rate of 64% (47/74). Younger patients (those aged <50 y) and patients who were less educated were more likely to drop out of the study. Patients who used health-related apps and the internet less were more likely to drop out of the study. Patients who remained in their jobs and patients who were infected by COVID-19 were more likely to drop out of the study.
CONCLUSIONS
This study investigated the predictors of dropout in web-based studies. Different factors such as patient sociodemographics, physical and mental health, digital use, COVID-19 pandemic correlates, and study design can correlate with the dropout rate. For web-based studies with a focus on mental health, it is suggested to consider these possible dropout predictors and take appropriate steps to help patients with a high risk of dropping out overcome difficulties in completing the study.