Who is Tweeting? A Scoping Review of Methods to Establish Race and Ethnicity from Twitter Datasets (Preprint)

Author:

Golder SuORCID,Stevens Robin,O'Conor KarenORCID,James Richard,Gonzalez-Hernandez Graciela

Abstract

BACKGROUND

Background: A growing amount of health research uses social media data. Those critical of social media research often cite that it may be unrepresentative of the population, but the suitability of social media data in digital epidemiology is more nuanced. Identifying the demographics of social media users can help establish representativeness.

OBJECTIVE

Objectives: We sought to identify the different approaches or combination of approaches to extract race or ethnicity from social media and report on the challenges of using these methods.

METHODS

Methods: We present a scoping review to identify the methods used to extract race or ethnicity from Twitter datasets. We searched 17 electronic databases and carried out reference checking and handsearching in order to identify relevant articles. Sifting of each record was undertaken independently by at least two researchers with any disagreement discussed. The included studies could be categorized by the methods the authors applied to extract race or ethnicity.

RESULTS

Results: From 1249 records we identified 67 that met our inclusion criteria. The majority focus on US based users and English language tweets. A range of types of data were used including Twitter profile -pictures or information from bios (such as names or self-declarations), or location and/or content in the tweets themselves. A range of methodologies were used including using manual inference, linkage to census data, commercial software, language/dialect recognition and machine learning. Not all studies evaluated their methods. Those that did found accuracy to vary from 45% to 93% with significantly lower accuracy identifying non-white race categories. The inference of race/ethnicity raises important ethical questions which can be exacerbated by the data and methods used. The comparative accuracy of different methods is also largely unknown.

CONCLUSIONS

Conclusion: There is no standard accepted approach or current guidelines for extracting or inferring race or ethnicity of Twitter users. Social media researchers must use careful interpretation of race or ethnicity and not over-promise what can be achieved, as even manual screening is a subjective, imperfect method. Future research should establish the accuracy of methods to inform evidence-based best practice guidelines for social media researchers, and be guided by concerns of equity and social justice.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3