Using Computational Methods to Improve Integrated Disease Management for Asthma and Chronic Obstructive Pulmonary Disease: Protocol for a Secondary Analysis (Preprint)

Author:

Luo GangORCID,Stone Bryan LORCID,Sheng XiaomingORCID,He ShanORCID,Koebnick CorinnaORCID,Nkoy Flory LORCID

Abstract

BACKGROUND

Asthma and chronic obstructive pulmonary disease (COPD) impose a heavy burden on health care. Approximately one-fourth of patients with asthma and patients with COPD are prone to exacerbations, which can be greatly reduced by preventive care via integrated disease management that has a limited service capacity. To do this well, a predictive model for proneness to exacerbation is required, but no such model exists. It would be suboptimal to build such models using the current model building approach for asthma and COPD, which has 2 gaps due to rarely factoring in temporal features showing early health changes and general directions. First, existing models for other asthma and COPD outcomes rarely use more advanced temporal features, such as the slope of the number of days to albuterol refill, and are inaccurate. Second, existing models seldom show the reason a patient is deemed high risk and the potential interventions to reduce the risk, making already occupied clinicians expend more time on chart review and overlook suitable interventions. Regular automatic explanation methods cannot deal with temporal data and address this issue well.

OBJECTIVE

To enable more patients with asthma and patients with COPD to obtain suitable and timely care to avoid exacerbations, we aim to implement comprehensible computational methods to accurately predict proneness to exacerbation and recommend customized interventions.

METHODS

We will use temporal features to accurately predict proneness to exacerbation, automatically find modifiable temporal risk factors for every high-risk patient, and assess the impact of actionable warnings on clinicians’ decisions to use integrated disease management to prevent proneness to exacerbation.

RESULTS

We have obtained most of the clinical and administrative data of patients with asthma from 3 prominent American health care systems. We are retrieving other clinical and administrative data, mostly of patients with COPD, needed for the study. We intend to complete the study in 6 years.

CONCLUSIONS

Our results will help make asthma and COPD care more proactive, effective, and efficient, improving outcomes and saving resources.

INTERNATIONAL REGISTERED REPORT

PRR1-10.2196/27065

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3