BACKGROUND
Stay-at-home orders were one of the controversial interventions to curb the spread of COVID-19 in the United States. The stay-at-home orders, implemented in 51 states and territories between March 7 and June 30, 2020, impacted the lives of individuals and communities and accelerated the heavy usage of web-based social networking sites. Twitter sentiment analysis can provide valuable insight into public health emergency response measures and allow for better formulation and timing of future public health measures to be released in response to future public health emergencies.
OBJECTIVE
This study evaluated how stay-at-home orders affect Twitter sentiment in the United States. Furthermore, this study aimed to understand the feedback on stay-at-home orders from groups with different circumstances and backgrounds. In addition, we particularly focused on vulnerable groups, including older people groups with underlying medical conditions, small and medium enterprises, and low-income groups.
METHODS
We constructed a multiperiod difference-in-differences regression model based on the Twitter sentiment geographical index quantified from 7.4 billion geo-tagged tweets data to analyze the dynamics of sentiment feedback on stay-at-home orders across the United States. In addition, we used moderated effects analysis to assess differential feedback from vulnerable groups.
RESULTS
We combed through the implementation of stay-at-home orders, Twitter sentiment geographical index, and the number of confirmed cases and deaths in 51 US states and territories. We identified trend changes in public sentiment before and after the stay-at-home orders. Regression results showed that stay-at-home orders generated a positive response, contributing to a recovery in Twitter sentiment. However, vulnerable groups faced greater shocks and hardships during the COVID-19 pandemic. In addition, economic and demographic characteristics had a significant moderating effect.
CONCLUSIONS
This study showed a clear positive shift in public opinion about COVID-19, with this positive impact occurring primarily after stay-at-home orders. However, this positive sentiment is time-limited, with 14 days later allowing people to be more influenced by the status quo and trends, so feedback on the stay-at-home orders is no longer positively significant. In particular, negative sentiment is more likely to be generated in states with a large proportion of vulnerable groups, and the policy plays a limited role. The pandemic hit older people, those with underlying diseases, and small and medium enterprises directly but hurt states with cross-cutting economic situations and more complex demographics over time. Based on large-scale Twitter data, this sociological perspective allows us to monitor the evolution of public opinion more directly, assess the impact of social events on public opinion, and understand the heterogeneity in the face of pandemic shocks.