Automatic Classification of Screen Gaze and Dialogue in Doctor-Patient-Computer Interactions: Computational Ethnography Algorithm Development and Validation (Preprint)

Author:

Helou SamarORCID,Abou-Khalil VictoriaORCID,Iacobucci RiccardoORCID,El Helou ElieORCID,Kiyono KenORCID

Abstract

BACKGROUND

The study of doctor-patient-computer interactions is a key research area for examining doctor-patient relationships; however, studying these interactions is costly and obtrusive as researchers usually set up complex mechanisms or intrude on consultations to collect, then manually analyze the data.

OBJECTIVE

We aimed to facilitate human-computer and human-human interaction research in clinics by providing a computational ethnography tool: an unobtrusive automatic classifier of screen gaze and dialogue combinations in doctor-patient-computer interactions.

METHODS

The classifier’s input is video taken by doctors using their computers' internal camera and microphone. By estimating the key points of the doctor's face and the presence of voice activity, we estimate the type of interaction that is taking place. The classification output of each video segment is 1 of 4 interaction classes: (1) screen gaze and dialogue, wherein the doctor is gazing at the computer screen while conversing with the patient; (2) dialogue, wherein the doctor is gazing away from the computer screen while conversing with the patient; (3) screen gaze, wherein the doctor is gazing at the computer screen without conversing with the patient; and (4) other, wherein no screen gaze or dialogue are detected. We evaluated the classifier using 30 minutes of video provided by 5 doctors simulating consultations in their clinics both in semi- and fully inclusive layouts.

RESULTS

The classifier achieved an overall accuracy of 0.83, a performance similar to that of a human coder. Similar to the human coder, the classifier was more accurate in fully inclusive layouts than in semi-inclusive layouts.

CONCLUSIONS

The proposed classifier can be used by researchers, care providers, designers, medical educators, and others who are interested in exploring and answering questions related to screen gaze and dialogue in doctor-patient-computer interactions.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3