Proactive Identification of Patients with Diabetes at Risk of Uncontrolled Outcomes during a Diabetes Management Program: Conceptualization and Development Study Using Machine Learning (Preprint)

Author:

Khalilnejad ArashORCID,Sun Ruo-TingORCID,Kompala TejaswiORCID,Painter StefanieORCID,James RobertaORCID,Wang YajuanORCID

Abstract

BACKGROUND

The growth in the capabilities of telehealth have made it possible to identify individuals with a higher risk of uncontrolled diabetes and provide them with targeted support and resources to help them manage their condition. Thus, predictive modeling has emerged as a valuable tool for the advancement of diabetes management.

OBJECTIVE

This study aimed to conceptualize and develop a novel machine learning (ML) approach to proactively identify participants enrolled in a remote diabetes monitoring program (RDMP) who were at risk of uncontrolled diabetes at 12 months in the program.

METHODS

Registry data from the Livongo for Diabetes RDMP were used to design separate dynamic predictive ML models to predict participant outcomes at each monthly checkpoint of the participants’ program journey (month-n models) from the first day of onboarding (month-0 model) up to the 11th month (month-11 model). A participant’s program journey began upon onboarding into the RDMP and monitoring their own blood glucose (BG) levels through the RDMP-provided BG meter. Each participant passed through 12 predicative models through their first year enrolled in the RDMP. Four categories of participant attributes (ie, survey data, BG data, medication fills, and health signals) were used for feature construction. The models were trained using the light gradient boosting machine and underwent hyperparameter tuning. The performance of the models was evaluated using standard metrics, including precision, recall, specificity, the area under the curve, the <i>F</i><sub>1</sub>-score, and accuracy.

RESULTS

The ML models exhibited strong performance, accurately identifying observable at-risk participants, with recall ranging from 70% to 94% and precision from 40% to 88% across the 12-month program journey. Unobservable at-risk participants also showed promising performance, with recall ranging from 61% to 82% and precision from 42% to 61%. Overall, model performance improved as participants progressed through their program journey, demonstrating the importance of engagement data in predicting long-term clinical outcomes.

CONCLUSIONS

This study explored the Livongo for Diabetes RDMP participants’ temporal and static attributes, identification of diabetes management patterns and characteristics, and their relationship to predict diabetes management outcomes. Proactive targeting ML models accurately identified participants at risk of uncontrolled diabetes with a high level of precision that was generalizable through future years within the RDMP. The ability to identify participants who are at risk at various time points throughout the program journey allows for personalized interventions to improve outcomes. This approach offers significant advancements in the feasibility of large-scale implementation in remote monitoring programs and can help prevent uncontrolled glycemic levels and diabetes-related complications. Future research should include the impact of significant changes that can affect a participant’s diabetes management.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3