Predicting rural patients� use of eHealth through supervised machine learning algorithms: A study on Portable Health Clinic in Bangladesh (Preprint)

Author:

Hossain NazmulORCID,Yokota FumihikoORCID,Fukuda AkiraORCID,Ahmed AshirORCID

Abstract

BACKGROUND

Predictive analytics through machine learning has been extensively using across industries including eHealth and mHealth for analyzing patient’s health data, predicting diseases, enhancing the productivity of technology or devices used for providing healthcare services and so on. However, not enough studies were conducted to predict the usage of eHealth by rural patients in developing countries.

OBJECTIVE

The objective of this study is to predict rural patients’ use of eHealth through supervised machine learning algorithms and propose the best-fitted model after evaluating their performances in terms of predictive accuracy.

METHODS

Data were collected between June and July 2016 through a field survey with structured questionnaire form 292 randomly selected rural patients in a remote North-Western sub-district of Bangladesh. Four supervised machine learning algorithms namely logistic regression, boosted decision tree, support vector machine, and artificial neural network were chosen for this experiment. A ‘correlation-based feature selection’ technique was applied to include the most relevant but not redundant features into the model. A 10-fold cross-validation technique was applied to reduce bias and over-fitting of the data.

RESULTS

Logistic regression outperformed other three algorithms with 85.9% predictive accuracy, 86.4% precision, 90.5% recall, 88.1% F-score, and AUC of 91.5% followed by neural network, decision tree and support vector machine with the accuracy rate of 84.2%, 82.9 %, and 80.4% respectively.

CONCLUSIONS

The findings of this study are expected to be helpful for eHealth practitioners in selecting appropriate areas to serve and dealing with both under-capacity and over-capacity by predicting the patients’ response in advance with a certain level of accuracy and precision.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3