A scoping review of the use of log data for evaluating mobile Apps (Preprint)

Author:

van Schalkwyk Ane,Grobbelaar SaraORCID,Vermeulen Euodia

Abstract

BACKGROUND

There is a growing trend in the potential benefits and application of log data for the evaluation of mHealth Apps. However, the process by which insights may be derived from log data remains unstructured, resulting in underutilisation of mHealth data.

OBJECTIVE

We aimed to acquire an understanding of how log data analysis can be used to generate valuable insights in support of realistic evaluations of mobile Apps through a scoping review. This understanding is delineated according to publication trends, associated concepts and characteristics of log data, framework or processes required to develop insights from log data, and how these insights may be utilised towards evaluation of Apps.

METHODS

The PRISMA-ScR guidelines for a scoping review were followed. The Scopus database, the Journal of Medical Internet Research (JMIR), and grey literature (through a Google search) delivered 105 articles of which 33 articles were retained in the sample for analysis and synthesis.

RESULTS

A definition for log data is developed from its characteristics and articulated as: anonymous records of users’ real-time interactions with the application, collected objectively or automatically and often accessed from cloud-based storage. Publications for theoretical and empirical work on log data analysis have increased between 2010 and 2021 (100% and 95% respectively). The research approach is distributed between inductive (43%), deductive (30%), and a hybrid approach (27%). Research methods include mixed-methods (73%) and quantitative only (27%), although mixed-methods dominate since 2018. Only 30% of studies articulated the use of a framework or model to perform the log data analysis. Four main focus areas for log data analysis are identified as usability (40%), engagement (15%), effectiveness (15%), and adherence (15%). An average of one year of log data is used for analysis, with an average of three years from the launch of the App to the analysis. Collected indicators include user events or clicks made, specific features of the App, and timestamps of clicks. The main calculated indicators are features used or not used (24/33), frequency (21/33), and duration (18/33). Reporting the calculated indicators per ‘user or user group’ was the most used reference point.

CONCLUSIONS

Standardised terminology, processes, frameworks, and explicit benchmarks to utilise log data are lacking in literature. Thereby, the need for a conceptual framework that is able to standardise the log analysis of mobile Apps is determined. We provide a summary of concepts towards such a framework.

CLINICALTRIAL

NA

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3