A Machine Learning Algorithm to Predict Hyperglycemic Cases Induced by PD-1/PD-L1 Inhibitors in the Real World (Preprint)

Author:

Yang Jincheng

Abstract

BACKGROUND

Diabetes mellitus and cancer are amongst the leading causes of deaths worldwide; hyperglycemia plays a major contributory role in neoplastic transformation risk. Support Vector Machine (SVM) is a type of supervised learning method which analyzes data and recognizes patterns, mainly used for statistical classification and regression.

OBJECTIVE

From reported adverse events of PD-1 or PD-L1 (programmed death 1 or ligand 1) inhibitors in post-marketing monitoring, we aimed to construct an effective machine learning algorithm to predict the probability of hyperglycemic adverse reaction from PD-1/PD-L1 inhibitors treated patients efficiently and rapidly.

METHODS

Raw data was downloaded from US Food and Drug Administration Adverse Event Reporting System (FDA FAERS). Signal of relationship between drug and adverse reaction based on disproportionality analysis and Bayesian analysis. A multivariate pattern classification of SVM was used to construct classifier to separate adverse hyperglycemic reaction patients. A 10-fold-3-time cross validation for model setup within training data (80% data) output best parameter values in SVM within R software. The model was validated in each testing data (20% data) and two total drug data, with exactly predictor parameter variables: gamma and nu.

RESULTS

Total 95918 case files were downloaded from 7 relevant drugs (cemiplimab, avelumab, durvalumab, atezolizumab, pembrolizumab, ipilimumab, nivolumab). The number-type/number-optimization method was selected to optimize model. Both gamma and nu values correlated with case number showed high adjusted r2 in curve regressions (both r2 >0.95). Indexes of accuracy, F1 score, kappa and sensitivity were greatly improved from the prediction model in training data and two total drug data.

CONCLUSIONS

The SVM prediction model established here can non-invasively and precisely predict occurrence of hyperglycemic adverse drug reaction (ADR) in PD-1/PD-L1 inhibitors treated patients. Such information is vital to overcome ADR and to improve outcomes by distinguish high hyperglycemia-risk patients, and this machine learning algorithm can eventually add value onto clinical decision making.

CLINICALTRIAL

N/A

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3