Mental Distress, Label Avoidance, and Use of a Mental Health Chatbot: Results from a U.S. Survey (Preprint)

Author:

Kosyluk Kristin,Baeder Tanner,Greene Karah YeonaORCID,Tran Jennifer T.,Bolton Cassidy,Loecher Nele,DiEva Daniel,Galea JeromeORCID

Abstract

BACKGROUND

Behavioral health provider supply has not kept pace with demand. Simply training more professionals will not be enough to address the strain on the U.S. behavioral healthcare workforce and exacerbated behavioral health challenges among U.S. adults due to COVID-19.

OBJECTIVE

Our objective was to pilot test a mental health chatbot designed to screen users for psychological distress and refer to resources.

METHODS

Data were collected via a national, cross-sectional, internet-based survey of U.S. adults. Measures included demographics, symptoms, stigma, technology acceptance, willingness to use the chatbot, and chatbot acceptability. Relationships between these variables were explored using chi-square tests, correlations, and logistic regression.

RESULTS

Of 222 participants, 75.7% completed mental health screening within the chatbot. Participants found the chatbot to be acceptable. Demographic predictors of chatbot use included being White or Black/African American, identifying as Hispanic/Latino, having dependents, having insurance coverage, having used mental health services in the past, having a diagnosed mental health condition, and reporting current distress. Logistic regression produced a significant model with perceived usefulness and symptoms as significant positive predictors of chatbot use for the overall sample, and label avoidance as the only significant predictor of chatbot use for those currently experiencing distress.

CONCLUSIONS

Chatbot technology may be a feasible and acceptable way to screen large numbers of people for psychological distress and disseminate mental health resources. Since label avoidance was identified as the single significant predictor of chatbot use among currently distressed individuals, chatbot technology may be one way to circumnavigate stigma as a barrier to engagement in behavioral health care.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3