Detecting Algorithmic Errors and Patient Harms for AI-Enabled Medical Devices in Randomized Controlled Trials: Protocol for a Systematic Review (Preprint)

Author:

Kale Aditya UORCID,Hogg Henry David JeffryORCID,Pearson RussellORCID,Glocker BenORCID,Golder SuORCID,Coombe AprilORCID,Waring JustinORCID,Liu XiaoxuanORCID,Moore David JORCID,Denniston Alastair KORCID

Abstract

BACKGROUND

Artificial intelligence (AI) medical devices have the potential to transform existing clinical workflows and ultimately improve patient outcomes. AI medical devices have shown potential for a range of clinical tasks such as diagnostics, prognostics, and therapeutic decision-making such as drug dosing. There is, however, an urgent need to ensure that these technologies remain safe for all populations. Recent literature demonstrates the need for rigorous performance error analysis to identify issues such as algorithmic encoding of spurious correlations (eg, protected characteristics) or specific failure modes that may lead to patient harm. Guidelines for reporting on studies that evaluate AI medical devices require the mention of performance error analysis; however, there is still a lack of understanding around how performance errors should be analyzed in clinical studies, and what harms authors should aim to detect and report.

OBJECTIVE

This systematic review will assess the frequency and severity of AI errors and adverse events (AEs) in randomized controlled trials (RCTs) investigating AI medical devices as interventions in clinical settings. The review will also explore how performance errors are analyzed including whether the analysis includes the investigation of subgroup-level outcomes.

METHODS

This systematic review will identify and select RCTs assessing AI medical devices. Search strategies will be deployed in MEDLINE (Ovid), Embase (Ovid), Cochrane CENTRAL, and clinical trial registries to identify relevant papers. RCTs identified in bibliographic databases will be cross-referenced with clinical trial registries. The primary outcomes of interest are the frequency and severity of AI errors, patient harms, and reported AEs. Quality assessment of RCTs will be based on version 2 of the Cochrane risk-of-bias tool (RoB2). Data analysis will include a comparison of error rates and patient harms between study arms, and a meta-analysis of the rates of patient harm in control versus intervention arms will be conducted if appropriate.

RESULTS

The project was registered on PROSPERO in February 2023. Preliminary searches have been completed and the search strategy has been designed in consultation with an information specialist and methodologist. Title and abstract screening started in September 2023. Full-text screening is ongoing and data collection and analysis began in April 2024.

CONCLUSIONS

Evaluations of AI medical devices have shown promising results; however, reporting of studies has been variable. Detection, analysis, and reporting of performance errors and patient harms is vital to robustly assess the safety of AI medical devices in RCTs. Scoping searches have illustrated that the reporting of harms is variable, often with no mention of AEs. The findings of this systematic review will identify the frequency and severity of AI performance errors and patient harms and generate insights into how errors should be analyzed to account for both overall and subgroup performance.

CLINICALTRIAL

PROSPERO CRD42023387747; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387747

INTERNATIONAL REGISTERED REPORT

PRR1-10.2196/51614

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3