Temporal Variations and Spatial Disparities in Public Sentiment Toward COVID-19 and Preventive Practices in the United States: Infodemiology Study of Tweets (Preprint)

Author:

Kahanek AlexanderORCID,Yu XinchenORCID,Hong LingziORCID,Cleveland AnaORCID,Philbrick JodiORCID

Abstract

BACKGROUND

During the COVID-19 pandemic, US public health authorities and county, state, and federal governments recommended or ordered certain preventative practices, such as wearing masks, to reduce the spread of the disease. However, individuals had divergent reactions to these preventive practices.

OBJECTIVE

The purpose of this study was to understand the variations in public sentiment toward COVID-19 and the recommended or ordered preventive practices from the temporal and spatial perspectives, as well as how the variations in public sentiment are related to geographical and socioeconomic factors.

METHODS

The authors leveraged machine learning methods to investigate public sentiment polarity in COVID-19–related tweets from January 21, 2020 to June 12, 2020. The study measured the temporal variations and spatial disparities in public sentiment toward both general COVID-19 topics and preventive practices in the United States.

RESULTS

In the temporal analysis, we found a 4-stage pattern from high negative sentiment in the initial stage to decreasing and low negative sentiment in the second and third stages, to the rebound and increase in negative sentiment in the last stage. We also identified that public sentiment to preventive practices was significantly different in urban and rural areas, while poverty rate and unemployment rate were positively associated with negative sentiment to COVID-19 issues.

CONCLUSIONS

The differences between public sentiment toward COVID-19 and the preventive practices imply that actions need to be taken to manage the initial and rebound stages in future pandemics. The urban and rural differences should be considered in terms of the communication strategies and decision making during a pandemic. This research also presents a framework to investigate time-sensitive public sentiment at the county and state levels, which could guide local and state governments and regional communities in making decisions and developing policies in crises.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3