Advancing Gun Violence Research with Social Media Data: A Computational Analysis of Gun Ownership (Preprint)

Author:

Gresenz Carole RoanORCID,Singh LisaORCID,Wang YanchenORCID,Haber JarenORCID,Liu Yaguang

Abstract

BACKGROUND

Social media data represent a potentially valuable source of information to support gun violence research. Strengthening the empirical and methodological foundations for using social media data in this context is important for advancing the future application of social media data to gun violence research.

OBJECTIVE

We assess the extent to which social media-based estimates are able to accurately capture geographic variability in firearms-related outcomes using firearm ownership as a test.

METHODS

We use Twitter data from 2019-2021 and state of the art computational methods to construct a machine learning model of firearm ownership. We create state-specific estimates of ownership and assess these estimates by comparing them to benchmark measures.

RESULTS

Methodologically, our study highlights the importance of large draws from social media data when location identification is paramount. Our analytic approach for modeling firearm ownership using machine learning and adjusting estimates using an inferred demographic provide examples of how these techniques can be used and expanded in future gun violence research. Empirically, we find a strong positive correlation between Twitter-based estimates of gun ownership and benchmark ownership estimates. For states meeting a threshold requirement of a minimum of 100 labeled Twitter users, the Pearson’s and Spearman’s correlations are 0.63 (p<0.001) and 0.64 (p <0.001), respectively.

CONCLUSIONS

Our findings underscore the potential of social media data for providing new windows into firearm behavior and outcomes, especially when measures from traditional data sources are limited or unavailable. Social media data carry analytical challenges when used for research purposes. Careful attention to them, as well as to ethical standards for use, is essential as the frontiers of social media data’s use in research are explored.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3