Influenza Surveillance using Search Engine, SNS, On-line Shopping, Q&A Service and Past Flu Patients (Preprint)

Author:

Murayama Taichi,Shimizu Nobuyuki,Fujita Sumio,Wakamiya Shoko,Aramaki Eiji

Abstract

BACKGROUND

Influenza, an infectious disease, causes many deaths worldwide. Predicting influenza victims during epidemics is an important task for clinical, hospital, and community outbreak preparation.

OBJECTIVE

On-line user-generated contents (UGC), primarily in the form of social media posts or search query logs, are generally used for prediction for reaction to sudden and unusual outbreaks. However, most studies rely only on the UGC as their resource and do not use various UGCs. Our study aims to solve these questions about Influenza prediction: Which model is the best? What combination of multiple UGCs works well? What is the nature of each UGC?

METHODS

We adapt some models, LASSO Regression, Huber Regression, Support Vector Machine regression with Linear kernel (SVR) and Random Forest, to test the influenza volume prediction in Japan during 2015 – 2018. For that, we use on-line five data resources: (1) past flu patients, (2) SNS (Twitter), (3) search engines (Yahoo! Japan), (4) shopping services (Yahoo! Shopping), and (5) Q&A services (Yahoo! Chiebukuro) as resources of each model. We then validate respective resources contributions using the best model, Huber Regression, with all resources except one resource. Finally, we use Bayesian change point method for ascertaining whether the trend of time series on any resources is reflected in the trend of flu patient count or not.

RESULTS

Our experiments show Huber Regression model based on various data resources produces the most accurate results. The coefficient of determination R2 are 0.907 from 2015 – 2016, 0.889 from 2016 – 2017 and 0.917 from 2017 – 2018 in predicting influenza 2 week ahead of the current date. Then, from the change point analysis, we get the result that search query logs and social media posts for three years represents these resources as a good predictor. The results of Sensitivity, is one metric, are 80% in search query and 75% in social media posts from 2017-2018.

CONCLUSIONS

We show that Huber Regression based on various data resources is strong for outliers and is suitable for the flu prediction. Additionally, we indicate the characteristics of each resource for the flu prediction.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3