BACKGROUND
Recent progress in genome data collection and analysis technologies has led to a surge of direct-to-consumer (DTC) genetic testing services. Owing to the clinical value and sensitivity of genomic data, as well as uncertainty and hearsay surrounding business practices of DTC genetic testing service providers, DTC genetic testing has faced significant criticism by researchers and practitioners. Research in this area has centered on ethical and legal implications of providing genetic tests directly to consumers, but we still lack a more profound understanding of how businesses in the DTC genetic testing markets work and provide value to different stakeholders.
OBJECTIVE
The aim of this study was to address the lack of knowledge concerning business models of DTC genetic testing services by systematically identifying the salient properties of various DTC genetic testing service business models as well as discerning dominant business models in the market.
METHODS
We employed a 3-phased research approach. In phase 1, we set up a database of 277 DTC genetic testing services. In phase 2, we drew on these data as well as conceptual models of DTC genetic testing services and iteratively developed a taxonomy of DTC genetic testing service business models. In phase 3, we used a 2-stage clustering method to cluster the 277 services that we identified during phase 1 and derived 6 dominant archetypes of DTC genetic testing service business models.
RESULTS
The contributions of this research are 2-fold. First, we provided a first of its kind, systematically developed taxonomy of DTC genetic testing service business models consisting of 15 dimensions in 4 categories. Each dimension comprises 2 to 5 characteristics and captures relevant aspects of DTC genetic testing service business models. Second, we derived 6 archetypes of DTC genetic testing service business models named as follows: (1) low-cost DTC genomics for enthusiasts, (2) high-privacy DTC genomics for enthusiasts, (3) specific information tests, (4) simple health tests, (5) basic low-value DTC genomics, and (6) comprehensive tests and low data processing.
CONCLUSIONS
Our analysis paints a much more complex business landscape in the DTC genetic testing market than previously anticipated. This calls for further research on business models and their effects that underlie DTC genetic testing services and invites specific regulatory interventions to protect consumers and level the playing field.