Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis (Preprint)

Author:

Abd-alrazaq AlaaORCID,AlSaad RawanORCID,Harfouche ManaleORCID,Aziz SarahORCID,Ahmed ArfanORCID,Damseh RafatORCID,Sheikh JavaidORCID

Abstract

BACKGROUND

Anxiety disorders rank among the most prevalent mental disorders worldwide. Anxiety symptoms are typically evaluated using self-assessment surveys or interview-based assessment methods conducted by clinicians, which can be subjective, time-consuming, and challenging to repeat. Therefore, there is an increasing demand for using technologies capable of providing objective and early detection of anxiety. Wearable artificial intelligence (AI), the combination of AI technology and wearable devices, has been widely used to detect and predict anxiety disorders automatically, objectively, and more efficiently.

OBJECTIVE

This systematic review and meta-analysis aims to assess the performance of wearable AI in detecting and predicting anxiety.

METHODS

Relevant studies were retrieved by searching 8 electronic databases and backward and forward reference list checking. In total, 2 reviewers independently carried out study selection, data extraction, and risk-of-bias assessment. The included studies were assessed for risk of bias using a modified version of the Quality Assessment of Diagnostic Accuracy Studies–Revised. Evidence was synthesized using a narrative (ie, text and tables) and statistical (ie, meta-analysis) approach as appropriate.

RESULTS

Of the 918 records identified, 21 (2.3%) were included in this review. A meta-analysis of results from 81% (17/21) of the studies revealed a pooled mean accuracy of 0.82 (95% CI 0.71-0.89). Meta-analyses of results from 48% (10/21) of the studies showed a pooled mean sensitivity of 0.79 (95% CI 0.57-0.91) and a pooled mean specificity of 0.92 (95% CI 0.68-0.98). Subgroup analyses demonstrated that the performance of wearable AI was not moderated by algorithms, aims of AI, wearable devices used, status of wearable devices, data types, data sources, reference standards, and validation methods.

CONCLUSIONS

Although wearable AI has the potential to detect anxiety, it is not yet advanced enough for clinical use. Until further evidence shows an ideal performance of wearable AI, it should be used along with other clinical assessments. Wearable device companies need to develop devices that can promptly detect anxiety and identify specific time points during the day when anxiety levels are high. Further research is needed to differentiate types of anxiety, compare the performance of different wearable devices, and investigate the impact of the combination of wearable device data and neuroimaging data on the performance of wearable AI.

CLINICALTRIAL

PROSPERO CRD42023387560; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387560

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3