BACKGROUND
Artificial intelligence (AI) provides opportunities to identify the health risks of patients and thus influence patient safety outcomes.
OBJECTIVE
The purpose of this systematic literature review was to identify and analyze quantitative studies utilizing or integrating AI to address and report clinical-level patient safety outcomes.
METHODS
We restricted our search to the PubMed, PubMed Central, and Web of Science databases to retrieve research articles published in English between January 2009 and August 2019. We focused on quantitative studies that reported positive, negative, or intermediate changes in patient safety outcomes using AI apps, specifically those based on machine-learning algorithms and natural language processing. Quantitative studies reporting only AI performance but not its influence on patient safety outcomes were excluded from further review.
RESULTS
We identified 53 eligible studies, which were summarized concerning their patient safety subcategories, the most frequently used AI, and reported performance metrics. Recognized safety subcategories were clinical alarms (n=9; mainly based on decision tree models), clinical reports (n=21; based on support vector machine models), and drug safety (n=23; mainly based on decision tree models). Analysis of these 53 studies also identified two essential findings: (1) the lack of a standardized benchmark and (2) heterogeneity in AI reporting.
CONCLUSIONS
This systematic review indicates that AI-enabled decision support systems, when implemented correctly, can aid in enhancing patient safety by improving error detection, patient stratification, and drug management. Future work is still needed for robust validation of these systems in prospective and real-world clinical environments to understand how well AI can predict safety outcomes in health care settings.