Predictive Value of Machine Learning for Platinum Chemotherapy Responses in Ovarian Cancer: Systematic Review and Meta-Analysis (Preprint)

Author:

Wang QingyiORCID,Chang ZhuoORCID,Liu XiaofangORCID,Wang YunruiORCID,Feng ChuwenORCID,Ping YunluORCID,Feng XiaolingORCID

Abstract

BACKGROUND

Machine learning is a potentially effective method for predicting the response to platinum-based treatment for ovarian cancer. However, the predictive performance of various machine learning methods and variables is still a matter of controversy and debate.

OBJECTIVE

This study aims to systematically review relevant literature on the predictive value of machine learning for platinum-based chemotherapy responses in patients with ovarian cancer.

METHODS

Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we systematically searched the PubMed, Embase, Web of Science, and Cochrane databases for relevant studies on predictive models for platinum-based therapies for the treatment of ovarian cancer published before April 26, 2023. The Prediction Model Risk of Bias Assessment tool was used to evaluate the risk of bias in the included articles. Concordance index (C-index), sensitivity, and specificity were used to evaluate the performance of the prediction models to investigate the predictive value of machine learning for platinum chemotherapy responses in patients with ovarian cancer.

RESULTS

A total of 1749 articles were examined, and 19 of them involving 39 models were eligible for this study. The most commonly used modeling methods were logistic regression (16/39, 41%), Extreme Gradient Boosting (4/39, 10%), and support vector machine (4/39, 10%). The training cohort reported C-index in 39 predictive models, with a pooled value of 0.806; the validation cohort reported C-index in 12 predictive models, with a pooled value of 0.831. Support vector machine performed well in both the training and validation cohorts, with a C-index of 0.942 and 0.879, respectively. The pooled sensitivity was 0.890, and the pooled specificity was 0.790 in the training cohort.

CONCLUSIONS

Machine learning can effectively predict how patients with ovarian cancer respond to platinum-based chemotherapy and may provide a reference for the development or updating of subsequent scoring systems.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3