A Clinical Prediction Model to Predict Heparin Treatment Outcomes and Provide Dosage Recommendations: Development and Validation Study (Preprint)

Author:

Li DongkaiORCID,Gao JianweiORCID,Hong NaORCID,Wang HaoORCID,Su LongxiangORCID,Liu ChunORCID,He JieORCID,Jiang HuizhenORCID,Wang QiangORCID,Long YunORCID,Zhu WeiguoORCID

Abstract

BACKGROUND

Unfractionated heparin is widely used in the intensive care unit as an anticoagulant. However, weight-based heparin dosing has been shown to be suboptimal and may place patients at unnecessary risk during their intensive care unit stay.

OBJECTIVE

In this study, we intended to develop and validate a machine learning–based model to predict heparin treatment outcomes and to provide dosage recommendations to clinicians.

METHODS

A shallow neural network model was adopted in a retrospective cohort of patients from the Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC III) database and patients admitted to the Peking Union Medical College Hospital (PUMCH). We modeled the subtherapeutic, normal, and supratherapeutic activated partial thromboplastin time (aPTT) as the outcomes of heparin treatment and used a group of clinical features for modeling. Our model classifies patients into 3 different therapeutic states. We tested the prediction ability of our model and evaluated its performance by using accuracy, the kappa coefficient, precision, recall, and the F1 score. Furthermore, a dosage recommendation module was designed and evaluated for clinical decision support.

RESULTS

A total of 3607 patients selected from MIMIC III and 1549 patients admitted to the PUMCH who met our criteria were included in this study. The shallow neural network model showed results of F1 scores 0.887 (MIMIC III) and 0.925 (PUMCH). When compared with the actual dosage prescribed, our model recommended increasing the dosage for 72.2% (MIMIC III, 1240/1718) and 64.7% (PUMCH, 281/434) of the subtherapeutic patients and decreasing the dosage for 80.9% (MIMIC III, 504/623) and 76.7% (PUMCH, 277/361) of the supratherapeutic patients, suggesting that the recommendations can contribute to clinical improvements and that they may effectively reduce the time to optimal dosage in the clinical setting.

CONCLUSIONS

The evaluation of our model for predicting heparin treatment outcomes demonstrated that the developed model is potentially applicable for reducing the misdosage of heparin and for providing appropriate decision recommendations to clinicians.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3