Comparing the Efficacy and Efficiency of Human and Generative AI: Qualitative Thematic Analyses (Preprint)

Author:

Prescott Maximo RORCID,Yeager SamanthaORCID,Ham LillianORCID,Rivera Saldana Carlos DORCID,Serrano VanessaORCID,Narez JoeyORCID,Paltin DafnaORCID,Delgado JorgeORCID,Moore David JORCID,Montoya JessicaORCID

Abstract

BACKGROUND

Qualitative methods are incredibly beneficial to the dissemination and implementation of new digital health interventions; however, these methods can be time intensive and slow down dissemination when timely knowledge from the data sources is needed in ever-changing health systems. Recent advancements in generative artificial intelligence (GenAI) and their underlying large language models (LLMs) may provide a promising opportunity to expedite the qualitative analysis of textual data, but their efficacy and reliability remain unknown.

OBJECTIVE

The primary objectives of our study were to evaluate the consistency in themes, reliability of coding, and time needed for inductive and deductive thematic analyses between GenAI (ie, ChatGPT and Bard) and human coders.

METHODS

The qualitative data for this study consisted of 40 brief SMS text message reminder prompts used in a digital health intervention for promoting antiretroviral medication adherence among people with HIV who use methamphetamine. Inductive and deductive thematic analyses of these SMS text messages were conducted by 2 independent teams of human coders. An independent human analyst conducted analyses following both approaches using ChatGPT and Bard. The consistency in themes (or the extent to which the themes were the same) and reliability (or agreement in coding of themes) between methods were compared.

RESULTS

The themes generated by GenAI (both ChatGPT and Bard) were consistent with 71% (5/7) of the themes identified by human analysts following inductive thematic analysis. The consistency in themes was lower between humans and GenAI following a deductive thematic analysis procedure (ChatGPT: 6/12, 50%; Bard: 7/12, 58%). The percentage agreement (or intercoder reliability) for these congruent themes between human coders and GenAI ranged from fair to moderate (ChatGPT, inductive: 31/66, 47%; ChatGPT, deductive: 22/59, 37%; Bard, inductive: 20/54, 37%; Bard, deductive: 21/58, 36%). In general, ChatGPT and Bard performed similarly to each other across both types of qualitative analyses in terms of consistency of themes (inductive: 6/6, 100%; deductive: 5/6, 83%) and reliability of coding (inductive: 23/62, 37%; deductive: 22/47, 47%). On average, GenAI required significantly less overall time than human coders when conducting qualitative analysis (20, SD 3.5 min vs 567, SD 106.5 min).

CONCLUSIONS

The promising consistency in the themes generated by human coders and GenAI suggests that these technologies hold promise in reducing the resource intensiveness of qualitative thematic analysis; however, the relatively lower reliability in coding between them suggests that hybrid approaches are necessary. Human coders appeared to be better than GenAI at identifying nuanced and interpretative themes. Future studies should consider how these powerful technologies can be best used in collaboration with human coders to improve the efficiency of qualitative research in hybrid approaches while also mitigating potential ethical risks that they may pose.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3