Arrhythmia Diagnosis through ECG Signal Classification Using A Hybrid CNN-LSTM Model: Comparison with current Deep Learning Approaches (Preprint)

Author:

Maglaveras NicosORCID,Petmezas Georgios,Kilintzis Vassilis,Stefanopoulos Leandros,Tzavelis Andreas,Rogers John A,Katsaggelos Aggelos K

Abstract

BACKGROUND

Electrocardiogram (ECG) recording and interpretation is the most common method used for the diagnosis of cardiac arrhythmias, nonetheless this process requires significant expertise and effort from the doctors’ perspective. Automated ECG signal classification could be a useful technique for the accurate detection and classification of several types of arrhythmias within a short timeframe.

OBJECTIVE

To review current approaches using state-of-the-art CNNs and deep learning methodologies in arrhythmia detection via ECG feature classification techniques and propose an optimised architecture capable of different types of arrhythmia diagnosis using publicly existing annotated arrhythmia databases from the MIT-BIH databases available at PHYSIONET (physionet.org) .

METHODS

A hybrid CNN-LSTM deep learning model is proposed to classify beats derived from two large ECG databases. The approach is proposed after a systematic review of current AI/DL methods applied in different types of arrhythmia diagnosis using the same public MIT-BIH databases. In the proposed architecture the CNN part carries out feature extraction and dimensionality reduction, and the LSTM part performs classification of the encoded ECG beat signals.

RESULTS

In experimental studies conducted with the MIT-BIH Arrhythmia and the MIT-BIH Atrial Fibrillation Databases average accuracies of 96.82% and 96.65% were noted respectively.

CONCLUSIONS

The proposed system can be used for arrhythmia diagnosis in clinical and mHealth applications managing a number of prevalent arrhythmias such as VT, AFIB, LBBB etc. The capability of CNNs to reduce the ECG beat signal’s size and extract its main features can be effectively combined with the LSTMs’ capability to learn the temporal dynamics of the input data for the accurate and automatic recognition of several types of cardiac arrhythmias.

CLINICALTRIAL

Not applicable.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3