Conjugation of Silver Nanoparticles With De Novo–Engineered Cationic Antimicrobial Peptides: Exploratory Proposal (Preprint)

Author:

Hu AlvinORCID

Abstract

BACKGROUND

Cationic antimicrobial peptides have broad antimicrobial activity and provide a novel way of targeting multidrug-resistant bacteria in the era of increasing antimicrobial resistance. Current developments show positive prospects for antimicrobial peptides and silver nanoparticles (AgNPs) individually.

OBJECTIVE

The primary objective is to propose another method for enhancing antimicrobial activity by conjugating AgNPs with cationic antimicrobial peptides, with a subsequent preliminary assessment of the minimum inhibitory concentration of multidrug-resistant bacteria. The secondary objective is to evaluate the safety of the conjugated compound and assess its viability for in vivo use.

METHODS

The proposal involves 3 stages. First, WLBU2C, a modified version of the antimicrobial peptide WLBU2 with an added cysteine group, needs to be synthesized using a standard Fmoc procedure. It can then be stably conjugated with AgNPs ideally through photochemical means. Second, the WLBU2C-AgNP conjugate should be tested for antimicrobial activity according to the Clinical & Laboratory Standards Institute manual on standard minimum inhibitory concentration testing. Third, the cytotoxicity of the conjugate should be tested using cell lysis assays if the above stages are completed.

RESULTS

I-TASSER (iterative threading assembly refinement) simulation revealed that the modified peptide WLBU2C has a secondary structure similar to that of the original WLBU2 peptide. No other results have been obtained at this time.

CONCLUSIONS

The addition of AgNPs to already developed de novo–engineered antimicrobial peptides provides an opportunity for the development of potent antimicrobials. Future prospects include emergency last-line therapy and treatment for current difficult-to-eradicate bacterial colonization, such as in cystic fibrosis, implantable medical devices, cancer, and immunotherapy. As I do not anticipate funding at this time, I hope this proposal provides inspiration to other researchers.

INTERNATIONAL REGISTERED REPORT

PRR1-10.2196/28307

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3