Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals With Transtibial Limb Loss Using Dynamic Stereo X-Ray: Protocol for a Lower Limb Loss Cadaver and Clinical Study (Preprint)

Author:

Maikos Jason TORCID,Chomack John MORCID,Herlihy David VORCID,Paglia David NORCID,Wetterstrand CharleneORCID,O'Connor J PatrickORCID,Hyre Michael JORCID,Loan J PeterORCID,D'Andrea Susan EORCID

Abstract

BACKGROUND

Relative motion between the residual limb and socket in individuals with transtibial limb loss can lead to substantial consequences that limit mobility. Although assessments of the relative motion between the residual limb and socket have been performed, there remains a substantial gap in understanding the complex mechanics of the residual limb-socket interface during dynamic activities that limits the ability to improve socket design. However, dynamic stereo x-ray (DSX) is an advanced imaging technology that can quantify 3D bone movement and skin deformation inside a socket during dynamic activities.

OBJECTIVE

This study aims to develop analytical tools using DSX to quantify the dynamic, in vivo kinematics between the residual limb and socket and the mechanism of residual tissue deformation.

METHODS

A lower limb cadaver study will first be performed to optimize the placement of an array of radiopaque beads and markers on the socket, liner, and skin to simultaneously assess dynamic tibial movement and residual tissue and liner deformation. Five cadaver limbs will be used in an iterative process to develop an optimal marker setup. Stance phase gait will be simulated during each session to induce bone movement and skin and liner deformation. The number, shape, size, and placement of each marker will be evaluated after each session to refine the marker set. Once an optimal marker setup is identified, 21 participants with transtibial limb loss will be fitted with a socket capable of being suspended via both elevated vacuum and traditional suction. Participants will undergo a 4-week acclimation period and then be tested in the DSX system to track tibial, skin, and liner motion under both suspension techniques during 3 activities: treadmill walking at a self-selected speed, at a walking speed 10% faster, and during a step-down movement. The performance of the 2 suspension techniques will be evaluated by quantifying the 3D bone movement of the residual tibia with respect to the socket and quantifying liner and skin deformation at the socket-residuum interface.

RESULTS

This study was funded in October 2021. Cadaver testing began in January 2023. Enrollment began in February 2024. Data collection is expected to conclude in December 2025. The initial dissemination of results is expected in November 2026.

CONCLUSIONS

The successful completion of this study will help develop analytical methods for the accurate assessment of residual limb-socket motion. The results will significantly advance the understanding of the complex biomechanical interactions between the residual limb and the socket, which can aid in evidence-based clinical practice and socket prescription guidelines. This critical foundational information can aid in the development of future socket technology that has the potential to reduce secondary comorbidities that result from complications of poor prosthesis load transmission.

INTERNATIONAL REGISTERED REPORT

DERR1-10.2196/57329

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3