Multidisciplinary Development and Initial Validation of a Clinical Knowledge Base on Chronic Respiratory Diseases for mHealth Decision Support Systems (Preprint)

Author:

Pereira Ana MargaridaORCID,Jácome CristinaORCID,Jacinto TiagoORCID,Amaral RitaORCID,Pereira MarianaORCID,Sá-Sousa AnaORCID,Couto MarianaORCID,Vieira-Marques PedroORCID,Martinho DiogoORCID,Vieira AnaORCID,Almeida AnaORCID,Martins ConstantinoORCID,Marreiros GoretiORCID,Freitas AlbertoORCID,Almeida RuteORCID,Fonseca João AORCID

Abstract

UNSTRUCTURED

Most mobile health (mHealth) decision support systems currently available for chronic obstructive respiratory diseases (CORDs) are not supported by clinical evidence or lack clinical validation. The development of the knowledge base that will feed the clinical decision support system is a crucial step that involves the collection and systematization of clinical knowledge from relevant scientific sources and its representation in a human-understandable and computer-interpretable way. This work describes the development and initial validation of a clinical knowledge base that can be integrated into mHealth decision support systems developed for patients with CORDs. A multidisciplinary team of health care professionals with clinical experience in respiratory diseases, together with data science and IT professionals, defined a new framework that can be used in other evidence-based systems. The knowledge base development began with a thorough review of the relevant scientific sources (eg, disease guidelines) to identify the recommendations to be implemented in the decision support system based on a consensus process. Recommendations were selected according to predefined inclusion criteria: (1) applicable to individuals with CORDs or to prevent CORDs, (2) directed toward patient self-management, (3) targeting adults, and (4) within the scope of the knowledge domains and subdomains defined. Then, the selected recommendations were prioritized according to (1) a harmonized level of evidence (reconciled from different sources); (2) the scope of the source document (international was preferred); (3) the entity that issued the source document; (4) the operability of the recommendation; and (5) health care professionals’ perceptions of the relevance, potential impact, and reach of the recommendation. A total of 358 recommendations were selected. Next, the variables required to trigger those recommendations were defined (n=116) and operationalized into logical rules using Boolean logical operators (n=405). Finally, the knowledge base was implemented in an intelligent individualized coaching component and pretested with an asthma use case. Initial validation of the knowledge base was conducted internally using data from a population-based observational study of individuals with or without asthma or rhinitis. External validation of the appropriateness of the recommendations with the highest priority level was conducted independently by 4 physicians. In addition, a strategy for knowledge base updates, including an easy-to-use rules editor, was defined. Using this process, based on consensus and iterative improvement, we developed and conducted preliminary validation of a clinical knowledge base for CORDs that translates disease guidelines into personalized patient recommendations. The knowledge base can be used as part of mHealth decision support systems. This process could be replicated in other clinical areas.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3