An ensemble model for predicting therapeutic response to unfractionated heparin therapy (Preprint)

Author:

Abdel-Hafez Ahmad,Scott Ian A.,Falconer Nazanin,Canaris Stephen,Bonilla Oscar,Marxen Sven,Van Garderen Aaron,Barras Michael

Abstract

BACKGROUND

Unfractionated heparin (UFH), is an anticoagulant drug considered a high-risk medication in that an excessive dose can cause bleeding, while an insufficient dose can lead to a recurrent embolic event. Following initiation of intravenous (IV) UFH, the therapeutic response is monitored using a measure of blood clotting time known as the activated partial thromboplastin time (aPTT). Clinicians iteratively adjust the dose of UFH to a target aPTT range, with the usual therapeutic target range between 60 to 100 seconds.

OBJECTIVE

The aim of this study was to develop and validate a ML algorithm to predict, aPTT within 12 hours after a specified bolus and maintenance dose of UFH.

METHODS

This was a retrospective cohort study of 3273 episodes of care from January 2017 to August 2020 using data collected from electronic health records (EHR) of five hospitals in Queensland, Australia. Data from four hospitals were used to build and test ensemble models using cross validation, while the data from the fifth hospital was used for external validation. Modelling was performed using H2O Driverless AI® an automated ML tool, and 17 different experiments were conducted in an iterative process to optimise model accuracy.

RESULTS

In predicting aPTT, the best performing experiment produced an ensemble with 4x LightGBM models with a root mean square error (RMSE) of 31.35. This dataset was re-purposed as a multi-classification task (sub-therapeutic, therapeutic, and supra-therapeutic aPTT result) and achieved a 59.9% accuracy and area under the receiver operating characteristic curve (AUC) of 0.735. External validation yielded similar results: RMSE of 30.52 +/- 1.29 for the prediction model, and accuracy of 56.8% +/- 3.15 and AUC of 0.724 for the multi-classification model.

CONCLUSIONS

According to our knowledge, this is the first study of ML applied to IV UFH dosing that has been developed and externally validated in a multisite adult general medical inpatient setting. We present the processes of data collection, preparation, and feature engineering for purposes of replication.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3