Machine Learning for Cardiovascular Outcomes From Wearable Data: Systematic Review From a Technology Readiness Level Point of View (Preprint)

Author:

Naseri Jahfari ArmanORCID,Tax DavidORCID,Reinders MarcelORCID,van der Bilt IvoORCID

Abstract

BACKGROUND

Wearable technology has the potential to improve cardiovascular health monitoring by using machine learning. Such technology enables remote health monitoring and allows for the diagnosis and prevention of cardiovascular diseases. In addition to the detection of cardiovascular disease, it can exclude this diagnosis in symptomatic patients, thereby preventing unnecessary hospital visits. In addition, early warning systems can aid cardiologists in timely treatment and prevention.

OBJECTIVE

This study aims to systematically assess the literature on detecting and predicting outcomes of patients with cardiovascular diseases by using machine learning with data obtained from wearables to gain insights into the current state, challenges, and limitations of this technology.

METHODS

We searched PubMed, Scopus, and IEEE Xplore on September 26, 2020, with no restrictions on the publication date and by using keywords such as “wearables,” “machine learning,” and “cardiovascular disease.” Methodologies were categorized and analyzed according to machine learning–based technology readiness levels (TRLs), which score studies on their potential to be deployed in an operational setting from 1 to 9 (most ready).

RESULTS

After the removal of duplicates, application of exclusion criteria, and full-text screening, 55 eligible studies were included in the analysis, covering a variety of cardiovascular diseases. We assessed the quality of the included studies and found that none of the studies were integrated into a health care system (TRL<6), prospective phase 2 and phase 3 trials were absent (TRL<7 and 8), and group cross-validation was rarely used. These issues limited these studies’ ability to demonstrate the effectiveness of their methodologies. Furthermore, there seemed to be no agreement on the sample size needed to train these studies’ models, the size of the observation window used to make predictions, how long participants should be observed, and the type of machine learning model that is suitable for predicting cardiovascular outcomes.

CONCLUSIONS

Although current studies show the potential of wearables to monitor cardiovascular events, their deployment as a diagnostic or prognostic cardiovascular clinical tool is hampered by the lack of a realistic data set and proper systematic and prospective evaluation.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3