BACKGROUND
Because of their kinetic nature, artifactual recordings of acceleromyography-based neuromuscular monitoring devices are not unusual. These generate a great deal of cynicism among anesthesiologists, constituting an obstacle toward their widespread adoption. Through outlier analysis techniques, monitoring devices can learn to detect and flag signal abnormalities.
OBJECTIVE
This study aims to engineer a set of features that enable the detection of outliers in the form of erroneous train-of-four (TOF) measurements from an acceleromyographic-based device. These features are tested for their potential in the detection of erroneous TOF measurements by developing an outlier detection algorithm.
METHODS
A data set encompassing 533 high-sensitivity TOF measurements from 35 patients was created based on a multicentric open label trial of a purpose-built accelero- and gyroscopic-based neuromuscular monitoring app. A basic set of features was extracted based on raw data while a second set of features was purpose engineered based on TOF pattern characteristics. Two cost-sensitive logistic regression (CSLR) models were deployed to evaluate the performance of these features. The final output of the developed models was a binary classification, indicating if a TOF measurement was an outlier or not.
RESULTS
A total of 7 basic features were extracted based on raw data, while another 8 features were engineered based on TOF pattern characteristics. The model training and testing were based on separate data sets: one with 319 measurements (18 outliers) and a second with 214 measurements (12 outliers). The F1 score (95% CI) was 0.86 (0.48-0.97) for the CSLR model with engineered features, significantly larger than the CSLR model with the basic features (0.29 [0.17-0.53]; <i>P</i><.001).
CONCLUSIONS
The set of engineered features and their corresponding incorporation in an outlier detection algorithm have the potential to increase overall neuromuscular monitoring data consistency. Integrating outlier flagging algorithms within neuromuscular monitors could potentially reduce overall acceleromyography-based reliability issues.
CLINICALTRIAL
ClinicalTrials.gov NCT03605225; https://clinicaltrials.gov/ct2/show/NCT03605225