Digital Phenotyping for Mood Disorders: Methodology-Oriented Pilot Feasibility Study (Preprint)

Author:

Breitinger ScottORCID,Gardea-Resendez ManuelORCID,Langholm Carsten,Xiong Ashley,Laivell Joseph,Stoppel Cynthia,Harper LauraORCID,Volety RamaORCID,Walker Alex,D'Mello Ryan,Byun Andrew Jin SooORCID,Zandi PeterORCID,Goes Fernando SORCID,Frye Mark,Torous JohnORCID

Abstract

BACKGROUND

In the burgeoning area of clinical digital phenotyping research, there is a dearth of literature that details methodology, including the key challenges and dilemmas in developing and implementing a successful architecture for technological infrastructure, patient engagement, longitudinal study participation, and successful reporting and analysis of diverse passive and active digital data streams.

OBJECTIVE

This article provides a narrative rationale for our study design in the context of the current evidence base and best practices, with an emphasis on our initial lessons learned from the implementation challenges and successes of this digital phenotyping study.

METHODS

We describe the design and implementation approach for a digital phenotyping pilot feasibility study with attention to synthesizing key literature and the reasoning for pragmatic adaptations in implementing a multisite study encompassing distinct geographic and population settings. This methodology was used to recruit patients as study participants with a clinician-validated diagnostic history of unipolar depression, bipolar I disorder, or bipolar II disorder, or healthy controls in 2 geographically distinct health care systems for a longitudinal digital phenotyping study of mood disorders.

RESULTS

We describe the feasibility of a multisite digital phenotyping pilot study for patients with mood disorders in terms of passively and actively collected phenotyping data quality and enrollment of patients. Overall data quality (assessed as the amount of sensor data obtained vs expected) was high compared to that in related studies. Results were reported on the relevant demographic features of study participants, revealing recruitment properties of age (mean subgroup age ranged from 31 years in the healthy control subgroup to 38 years in the bipolar I disorder subgroup), sex (predominance of female participants, with 7/11, 64% females in the bipolar II disorder subgroup), and smartphone operating system (iOS vs Android; iOS ranged from 7/11, 64% in the bipolar II disorder subgroup to 29/32, 91% in the healthy control subgroup). We also described implementation considerations around digital phenotyping research for mood disorders and other psychiatric conditions.

CONCLUSIONS

Digital phenotyping in affective disorders is feasible on both Android and iOS smartphones, and the resulting data quality using an open-source platform is higher than that in comparable studies. While the digital phenotyping data quality was independent of gender and race, the reported demographic features of study participants revealed important information on possible selection biases that may result from naturalistic research in this domain. We believe that the methodology described will be readily reproducible and generalizable to other study settings and patient populations given our data on deployment at 2 unique sites.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3