Predicting Health Information Suitability for Children Using Machine-Learning Assisted Selection of Semantic Features (Preprint)

Author:

Xie WenxiuORCID,Ji MengORCID,Liu YanmengORCID,Hao TianyongORCID,Chow Chi-YinORCID

Abstract

BACKGROUND

Suitability of health resources for specific readerships represents a critical yet underexplored area of research in health informatics, despite its importance in health literacy and health education. High relevance of health information can improve the suitability and readability of online health educational resources for young readers. It has an important role in developing the health literacy of children with increasing exposure to online health information. Existing research on health resource evaluation is limited to the analysis of the morphological and syntactic complexity. Besides, empirical instruments do not exist to evaluate the suitability of online health information for children.

OBJECTIVE

We aimed to develop algorithms to predict suitability of online health information for this understudied user group, using a small number of semantic features to provide accurate and convenient tools for automatic prediction of the suitability of online health information for children.

METHODS

Combining machine learning and linguistic insights, we identified semantic features to predict the suitability of online health information for children, as an emerging and large readership on online health information. The selection of natural language features as predicator variables of algorithms went through initial automatic feature selection using Ridge Classifier, support vector machine, extreme gradient boost, followed by revision by linguists, education experts based on effective health information design. We compared algorithms using the automatically selected features (19) and linguistically enhanced features (20), using the initial features (115) as the baseline.

RESULTS

Using 5-fold cross-validation, comparing with the baseline (115 features), the Gaussian Naive Bayes model (20 features) achieved statistically higher mean sensitivity (P =0.0206, 95% CI: -0.016, 0.1929); mean specificity (P = 0.0205, 95% CI: -0.016, 0.199); mean AUC (P =0.017, 95% CI: -0.007, 0.140); mean Macro F1 (P =0.0061, 95% CI: 0.016, 0.167). The statistically improved performance of the final model (20 features) stands in contrast with the statistically insignificant changes between the original feature set (115) and the automatically selected features (19): mean sensitivity (P =0.134, 95% CI: -0.1699, 0.0681), mean specificity (P = 0.1001, 95% CI: -0.1389, 0.4017); mean AUC (P =0.0082, 95% CI: 0.0059, 0.1126), and mean macro F1 (P = 0.9796, 95% CI: -0.0555, 0.0548). This demonstrates the importance and effectiveness of combing automatic feature selection and expert-based linguistic revision to develop most effective machine learning algorithms from high-dimensional datasets.

CONCLUSIONS

Our study developed machine learning algorithms for evaluating health information suitability for children, an important readership who is having increasing reliance on online health information for developing their health literacy. User-adaptive automatic assessment of online health contents holds much promise for distant and remote health education among young readers. Our study leveraged the precision, adaptability of machine learning algorithms and insights from health linguistics to help advance this significant yet understudied area of research.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3