Improving Skin Cancer Diagnostics Through a Mobile App With a Large Interactive Image Repository: Randomized Controlled Trial (Preprint)

Author:

Nervil Gustav GedeORCID,Ternov Niels KvorningORCID,Vestergaard TineORCID,Sølvsten HenrikORCID,Chakera Annette HougaardORCID,Tolsgaard Martin GrønnebækORCID,Hölmich Lisbet RosenkrantzORCID

Abstract

BACKGROUND

Skin cancer diagnostics is challenging, and mastery requires extended periods of dedicated practice.

OBJECTIVE

The aim of the study was to determine if self-paced pattern recognition training in skin cancer diagnostics with clinical and dermoscopic images of skin lesions using a large-scale interactive image repository (LIIR) with patient cases improves primary care physicians’ (PCPs’) diagnostic skills and confidence.

METHODS

A total of 115 PCPs were randomized (allocation ratio 3:1) to receive or not receive self-paced pattern recognition training in skin cancer diagnostics using an LIIR with patient cases through a quiz-based smartphone app during an 8-day period. The participants’ ability to diagnose skin cancer was evaluated using a 12-item multiple-choice questionnaire prior to and 8 days after the educational intervention period. Their thoughts on the use of dermoscopy were assessed using a study-specific questionnaire. A learning curve was calculated through the analysis of data from the mobile app.

RESULTS

On average, participants in the intervention group spent 2 hours 26 minutes quizzing digital patient cases and 41 minutes reading the educational material. They had an average preintervention multiple choice questionnaire score of 52.0% of correct answers, which increased to 66.4% on the postintervention test; a statistically significant improvement of 14.3 percentage points (<i>P</i>&lt;.001; 95% CI 9.8-18.9) with intention-to-treat analysis. Analysis of participants who received the intervention as per protocol (500 patient cases in 8 days) showed an average increase of 16.7 percentage points (<i>P</i>&lt;.001; 95% CI 11.3-22.0) from 53.9% to 70.5%. Their overall ability to correctly recognize malignant lesions in the LIIR patient cases improved over the intervention period by 6.6 percentage points from 67.1% (95% CI 65.2-69.3) to 73.7% (95% CI 72.5-75.0) and their ability to set the correct diagnosis improved by 10.5 percentage points from 42.5% (95% CI 40.2%-44.8%) to 53.0% (95% CI 51.3-54.9). The diagnostic confidence of participants in the intervention group increased on a scale from 1 to 4 by 32.9% from 1.6 to 2.1 (<i>P</i>&lt;.001). Participants in the control group did not increase their postintervention score or their diagnostic confidence during the same period.

CONCLUSIONS

Self-paced pattern recognition training in skin cancer diagnostics through the use of a digital LIIR with patient cases delivered by a quiz-based mobile app improves the diagnostic accuracy of PCPs.

CLINICALTRIAL

ClinicalTrials.gov NCT05661370; https://classic.clinicaltrials.gov/ct2/show/NCT05661370

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3