Mobile Health App for Chronic Wound Management (Preprint)

Author:

Reifs DavidORCID,Bolaño Ramon ReigORCID,Cuyas Francesc Garcia,Zorita Marta Casals,Carrion Sergi Grau

Abstract

BACKGROUND

Chronic ulcers, and especially ulcers affecting the lower extremities and their protracted evolution, are a health problem with significant socio-economic repercussions. The patient's quality of life often deteriorates, leading to serious personal problems for the patient and, in turn, major care challenges for healthcare professionals. Our study proposes a new approach for assisting wound assessment and criticality with an integrated framework based on a Mobile App and a Cloud platform, supporting the practitioner and optimising organisational processes. This framework, called Clinicgram, uses a decision-making support method, such as morphological analysis of wounds and artificial intelligence algorithms for feature classification and a system for matching similar cases via an easily accessible and user-friendly mobile app, and assesses the clinician to choose the best treatment.

OBJECTIVE

The main objective of this work is to evaluate the impact of the incorporation of Clinicgram, a mobile App and a Cloud platform with Artificial Intelligence algorithms to help the clinician as a decision support system to assess and evaluate correct treatments. Second objective evaluates how the professional can benefit from this technology into the real clinical practice, how it impacts patient care and how the organisation’s resources can be optimised.

METHODS

Clinicgram application and framework is a non-radiological clinical imaging management tool that is incorporated into clinical practice. The tool will also enable the execution of the different algorithms intended for assessment in this study. With the use of computer vision and supervised learning techniques, different algorithms are implemented to simplify a practitioner's task of assessment and anomaly spotting in clinical cases. Determining the area of interest of the case automatically and using it to assess different wound characteristics such as area calculation and tissue classification, and detecting different signs of infection. An observational and an objective study have been carried out that will allow obtaining clear indicators of the level of usability in clinical practice.

RESULTS

A total of 2,750 wound pictures were taken by 10 nurses for analysis during the study from January 2018 to November 2021. Objective results have been obtained from the use and management of the application, important feedback from professionals with a score of 5.55 out of 7 according to the mHealth App Usability Questionnaire. It has also been possible to collect the most present type of wound according to Resvech 2.0 of between 6 and 16 points of severity, and highlight the collection of images of between 0 and 16 cm2 of area 88%, with involvement of subcutaneous tissue 53.21%, with the presence of granulated tissue 59.16% and necrotic 30.29% and with a wet wound bed 61.54%. The usage of app to upload samples increase from 31 to 110 samples per month from 2018 to 2021.

CONCLUSIONS

Our real-world assessment demonstrates the effectiveness and reliability of the wound assessment system, increasing professional efficiency, reducing data collection time during the visit and optimising costs-effectivity in the healthcare organisation by reducing treatment variability. Also, the comfort of the professional and patient. Incorporating a tool such as Clinicgram into the chronic wound assessment and monitoring process adds value, reduction of errors and improves both the clinical practice process time, while also improving decision-making by the professional and consequently having a positive impact on the patient's wound healing process.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3