Artificial Intelligence–Driven Respiratory Distress Syndrome Prediction for Very Low Birth Weight Infants: Korean Multicenter Prospective Cohort Study (Preprint)

Author:

Jang WoocheolORCID,Choi Yong SungORCID,Kim Ji YooORCID,Yon Dong KeonORCID,Lee Young JooORCID,Chung Sung-HoonORCID,Kim Chae YoungORCID,Yeo Seung GeunORCID,Lee JinseokORCID

Abstract

BACKGROUND

Respiratory distress syndrome (RDS) is a disease that commonly affects premature infants whose lungs are not fully developed. RDS results from a lack of surfactant in the lungs. The more premature the infant is, the greater is the likelihood of having RDS. However, even though not all premature infants have RDS, preemptive treatment with artificial pulmonary surfactant is administered in most cases.

OBJECTIVE

We aimed to develop an artificial intelligence model to predict RDS in premature infants to avoid unnecessary treatment.

METHODS

In this study, 13,087 very low birth weight infants who were newborns weighing less than 1500 grams were assessed in 76 hospitals of the Korean Neonatal Network. To predict RDS in very low birth weight infants, we used basic infant information, maternity history, pregnancy/birth process, family history, resuscitation procedure, and test results at birth such as blood gas analysis and Apgar score. The prediction performances of 7 different machine learning models were compared, and a 5-layer deep neural network was proposed in order to enhance the prediction performance from the selected features. An ensemble approach combining multiple models from the 5-fold cross-validation was subsequently developed.

RESULTS

Our proposed ensemble 5-layer deep neural network consisting of the top 20 features provided high sensitivity (83.03%), specificity (87.50%), accuracy (84.07%), balanced accuracy (85.26%), and area under the curve (0.9187). Based on the model that we developed, a public web application that enables easy access for the prediction of RDS in premature infants was deployed.

CONCLUSIONS

Our artificial intelligence model may be useful for preparations for neonatal resuscitation, particularly in cases involving the delivery of very low birth weight infants, as it can aid in predicting the likelihood of RDS and inform decisions regarding the administration of surfactant.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3