A Low-Cost, Ear-Contactless Electronic Stethoscope Powered by Raspberry Pi for Auscultation of Patients With COVID-19: Prototype Development and Feasibility Study (Preprint)

Author:

Yang ChuanORCID,Zhang WeiORCID,Pang ZhixuanORCID,Zhang JingORCID,Zou DelingORCID,Zhang XinzhongORCID,Guo SicongORCID,Wan JiyeORCID,Wang KeORCID,Pang WenyueORCID

Abstract

BACKGROUND

Chest examination by auscultation is essential in patients with COVID-19, especially those with poor respiratory conditions, such as severe pneumonia and respiratory dysfunction, and intensive cases who are intubated and whose breathing is assisted with a ventilator. However, proper auscultation of these patients is difficult when medical workers wear personal protective equipment and when it is necessary to minimize contact with patients.

OBJECTIVE

The objective of our study was to design and develop a low-cost electronic stethoscope enabling ear-contactless auscultation and digital storage of data for further analysis. The clinical feasibility of our device was assessed in comparison to a standard electronic stethoscope.

METHODS

We developed a prototype of the ear-contactless electronic stethoscope, called Auscul Pi, powered by Raspberry Pi and Python. Our device enables real-time capture of auscultation sounds with a microspeaker instead of an earpiece, and it can store data files for later analysis. We assessed the feasibility of using this stethoscope by detecting abnormal heart and respiratory sounds from 8 patients with heart failure or structural heart diseases and from 2 healthy volunteers and by comparing the results with those from a 3M Littmann electronic stethoscope.

RESULTS

We were able to conveniently operate Auscul Pi and precisely record the patients’ auscultation sounds. Auscul Pi showed similar real-time recording and playback performance to the Littmann stethoscope. The phonocardiograms of data obtained with the two stethoscopes were consistent and could be aligned with the cardiac cycles of the corresponding electrocardiograms. Pearson correlation analysis of amplitude data from the two types of phonocardiograms showed that Auscul Pi was correlated with the Littmann stethoscope with coefficients of 0.3245-0.5570 for healthy participants (<i>P</i><.001) and of 0.3449-0.5138 among 4 patients (<i>P</i><.001).

CONCLUSIONS

Auscul Pi can be used for auscultation in clinical practice by applying real-time ear-contactless playback followed by quantitative analysis. Auscul Pi may allow accurate auscultation when medical workers are wearing protective suits and have difficulties in examining patients with COVID-19.

CLINICALTRIAL

ChiCTR.org.cn ChiCTR2000033830; http://www.chictr.org.cn/showproj.aspx?proj=54971.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3