Just-in-Time Adaptive Mechanisms of Popular Mobile Apps for Individuals With Depression: Systematic App Search and Literature Review (Preprint)

Author:

Teepe Gisbert WORCID,Da Fonseca AshishORCID,Kleim BirgitORCID,Jacobson Nicholas CORCID,Salamanca Sanabria AliciaORCID,Tudor Car LorainneORCID,Fleisch ElgarORCID,Kowatsch TobiasORCID

Abstract

BACKGROUND

The number of smartphone apps that focus on the prevention, diagnosis, and treatment of depression is increasing. A promising approach to increase the effectiveness of the apps while reducing the individual’s burden is the use of just-in-time adaptive intervention (JITAI) mechanisms. JITAIs are designed to improve the effectiveness of the intervention and reduce the burden on the person using the intervention by providing the right type of support at the right time. The right type of support and the right time are determined by measuring the state of vulnerability and the state of receptivity, respectively.

OBJECTIVE

The aim of this study is to systematically assess the use of JITAI mechanisms in popular apps for individuals with depression.

METHODS

We systematically searched for apps addressing depression in the Apple App Store and Google Play Store, as well as in curated lists from the Anxiety and Depression Association of America, the United Kingdom National Health Service, and the American Psychological Association in August 2020. The relevant apps were ranked according to the number of reviews (Apple App Store) or downloads (Google Play Store). For each app, 2 authors separately reviewed all publications concerning the app found within scientific databases (PubMed, Cochrane Register of Controlled Trials, PsycINFO, Google Scholar, IEEE Xplore, Web of Science, ACM Portal, and Science Direct), publications cited on the app’s website, information on the app’s website, and the app itself. All types of measurements (eg, open questions, closed questions, and device analytics) found in the apps were recorded and reviewed.

RESULTS

None of the 28 reviewed apps used JITAI mechanisms to tailor content to situations, states, or individuals. Of the 28 apps, 3 (11%) did not use any measurements, 20 (71%) exclusively used self-reports that were insufficient to leverage the full potential of the JITAIs, and the 5 (18%) apps using self-reports and passive measurements used them as progress or task indicators only. Although 34% (23/68) of the reviewed publications investigated the effectiveness of the apps and 21% (14/68) investigated their efficacy, no publication mentioned or evaluated JITAI mechanisms.

CONCLUSIONS

Promising JITAI mechanisms have not yet been translated into mainstream depression apps. Although the wide range of passive measurements available from smartphones were rarely used, self-reported outcomes were used by 71% (20/28) of the apps. However, in both cases, the measured outcomes were not used to tailor content and timing along a state of vulnerability or receptivity. Owing to this lack of tailoring to individual, state, or situation, we argue that the apps cannot be considered JITAIs. The lack of publications investigating whether JITAI mechanisms lead to an increase in the effectiveness or efficacy of the apps highlights the need for further research, especially in real-world apps.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3