Predictive Model for Extended-Spectrum β-Lactamase–Producing Bacterial Infections Using Natural Language Processing Technique and Open Data in Intensive Care Unit Environment: Retrospective Observational Study (Preprint)

Author:

Ito GentaORCID,Yada ShuntaroORCID,Wakamiya ShokoORCID,Aramaki EijiORCID

Abstract

BACKGROUND

Machine learning has advanced medical event prediction, mostly using private data. The public MIMIC-3 (Medical Information Mart for Intensive Care III) data set, which contains detailed data on over 40,000 intensive care unit patients, stands out as it can help develop better models including structured and textual data.

OBJECTIVE

This study aimed to build and test a machine learning model using the MIMIC-3 data set to determine the effectiveness of information extracted from electronic medical record text using a named entity recognition, specifically QuickUMLS, for predicting important medical events. Using the prediction of extended-spectrum β-lactamase (ESBL)–producing bacterial infections as an example, this study shows how open data sources and simple technology can be useful for making clinically meaningful predictions.

METHODS

The MIMIC-3 data set, including demographics, vital signs, laboratory results, and textual data, such as discharge summaries, was used. This study specifically targeted patients diagnosed with <i>Klebsiella pneumoniae</i> or <i>Escherichia coli</i> infection. Predictions were based on ESBL-producing bacterial standards and the minimum inhibitory concentration criteria. Both the structured data and extracted patient histories were used as predictors. In total, 2 models, an L1-regularized logistic regression model and a LightGBM model, were evaluated using the receiver operating characteristic area under the curve (ROC-AUC) and the precision-recall curve area under the curve (PR-AUC).

RESULTS

Of 46,520 MIMIC-3 patients, 4046 were identified with bacterial cultures, indicating the presence of <i>K pneumoniae</i> or <i>E coli</i>. After excluding patients who lacked discharge summary text, 3614 patients remained. The L1-penalized model, with variables from only the structured data, displayed a ROC-AUC of 0.646 and a PR-AUC of 0.307. The LightGBM model, combining structured and textual data, achieved a ROC-AUC of 0.707 and a PR-AUC of 0.369. Key contributors to the LightGBM model included patient age, duration since hospital admission, and specific medical history such as diabetes. The structured data-based model showed improved performance compared to the reference models. Performance was further improved when textual medical history was included. Compared to other models predicting drug-resistant bacteria, the results of this study ranked in the middle. Some misidentifications, potentially due to the limitations of QuickUMLS, may have affected the accuracy of the model.

CONCLUSIONS

This study successfully developed a predictive model for ESBL-producing bacterial infections using the MIMIC-3 data set, yielding results consistent with existing literature. This model stands out for its transparency and reliance on open data and open-named entity recognition technology. The performance of the model was enhanced using textual information. With advancements in natural language processing tools such as BERT and GPT, the extraction of medical data from text holds substantial potential for future model optimization.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3