A Differential Privacy Protection Query Language for Medical Data: Study Design (Preprint)

Author:

Wang Huanhuan,Wu Xiang,Tan Yongqi,Yin Hongsheng,Cheng Xiaochun,Li Zimin,Zhang Yongting,Shi Minyu

Abstract

BACKGROUND

Medical data mining and sharing is an important process to realize the value of medical big data in E-Health applications. However, medical data contains a large amount of personal private information of patients, there is a risk of privacy disclosure when sharing and mining. Therefore, how to ensure the security of medical big data in the process of publishing, sharing and mining has become the focus of current researches.

OBJECTIVE

The objective of our study is to design a framework based on differential privacy protection mechanism to ensure the security sharing of medical data. We developed a privacy Protection Query Language (PQL) that can integrate multiple machine mining methods and provide secure sharing functions for medical data.

METHODS

This paper adopts a modular design method with three sub-modules, including parsing module, mining module and noising module. Each module encapsulates different computing devices, such as composite parser, noise jammer, etc. In the PQL framework, we apply the differential privacy mechanism to the results of the module collaborative calculation to optimize the security of various mining algorithms. These computing devices operate independently, but the mining results depend on their cooperation.

RESULTS

Designed and developed a query language framework that provides medical data mining, sharing and privacy preserving functions. We theoretically proved the performance of the PQL framework. The experimental results showed that the PQL framework can ensure the security of each mining result, and the average usefulness of the output results is above 97%.

CONCLUSIONS

We presented a security framework that enables medical data providers to securely share the health data or treatment data, and developed a usable query language based on differential privacy mechanism that enables researchers to mine potential information securely using data mining algorithms.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3