Reduction of Platelet Outdating and Shortage by Forecasting Demand With Statistical Learning and Deep Neural Networks: Modeling Study (Preprint)

Author:

Schilling MaximilianORCID,Rickmann LennartORCID,Hutschenreuter GabrieleORCID,Spreckelsen CordORCID

Abstract

BACKGROUND

Platelets are a valuable and perishable blood product. Managing platelet inventory is a demanding task because of short shelf lives and high variation in daily platelet use patterns. Predicting platelet demand is a promising step toward avoiding obsolescence and shortages and ensuring optimal care.

OBJECTIVE

The aim of this study is to forecast platelet demand for a given hospital using both a statistical model and a deep neural network. In addition, we aim to calculate the possible reduction in waste and shortage of platelets using said predictions in a retrospective simulation of the platelet inventory.

METHODS

Predictions of daily platelet demand were made by a least absolute shrinkage and selection operator (LASSO) model and a recurrent neural network (RNN) with long short-term memory (LSTM). Both models used the same set of 81 clinical features. Predictions were passed to a simulation of the blood inventory to calculate the possible reduction in waste and shortage as compared with historical data.

RESULTS

From January 1, 2008, to December 31, 2018, the waste and shortage rates for platelets were 10.1% and 6.5%, respectively. In simulations of platelet inventory, waste could be lowered to 4.9% with the LASSO and 5% with the RNN, whereas shortages were 2.1% and 1.7% with the LASSO and RNN, respectively. Daily predictions of platelet demand for the next 2 days had mean absolute percent errors of 25.5% (95% CI 24.6%-26.6%) with the LASSO and 26.3% (95% CI 25.3%-27.4%) with the LSTM (<i>P</i>=.01). Predictions for the next 4 days had mean absolute percent errors of 18.1% (95% CI 17.6%-18.6%) with the LASSO and 19.2% (95% CI 18.6%-19.8%) with the LSTM (<i>P</i>&lt;.001).

CONCLUSIONS

Both models allow for predictions of platelet demand with similar and sufficient accuracy to significantly reduce waste and shortage in a retrospective simulation study. The possible improvements in platelet inventory management are roughly equivalent to US $250,000 per year.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3