Identifying Psychosocial and Ecological Determinants of Enthusiasm In Youth: Integrative Cross-Sectional Analysis Using Machine Learning (Preprint)

Author:

Dolling-Boreham Roberta MORCID,Mohan AkshayORCID,Abdelhack MohamedORCID,Elton-Marshall TaraORCID,Hamilton Hayley AORCID,Boak AngelaORCID,Felsky DanielORCID

Abstract

BACKGROUND

Understanding the factors contributing to mental well-being in youth is a public health priority. Self-reported enthusiasm for the future may be a useful indicator of well-being and has been shown to forecast social and educational success. Typically, cross-domain measures of ecological and health-related factors with relevance to public policy and programming are analyzed either in isolation or in targeted models assessing bivariate interactions. Here, we capitalize on a large provincial data set and machine learning to identify the sociodemographic, experiential, behavioral, and other health-related factors most strongly associated with levels of subjective enthusiasm for the future in a large sample of elementary and secondary school students.

OBJECTIVE

The aim of this study was to identify the sociodemographic, experiential, behavioral, and other health-related factors associated with enthusiasm for the future in elementary and secondary school students using machine learning.

METHODS

We analyzed data from 13,661 participants in the 2019 Ontario Student Drug Use and Health Survey (OSDUHS) (grades 7-12) with complete data for our primary outcome: self-reported levels of enthusiasm for the future. We used 50 variables as model predictors, including demographics, perception of school experience (i.e., school connectedness and academic performance), physical activity and quantity of sleep, substance use, and physical and mental health indicators. Models were built using a nonlinear decision tree–based machine learning algorithm called extreme gradient boosting to classify students as indicating either high or low levels of enthusiasm. Shapley additive explanations (SHAP) values were used to interpret the generated models, providing a ranking of feature importance and revealing any nonlinear or interactive effects of the input variables.

RESULTS

The top 3 contributors to higher self-rated enthusiasm for the future were higher self-rated physical health (SHAP value=0.62), feeling that one is able to discuss problems or feelings with their parents (SHAP value=0.49), and school belonging (SHAP value=0.32). Additionally, subjective social status at school was a top feature and showed nonlinear effects, with benefits to predicted enthusiasm present in the mid-to-high range of values.

CONCLUSIONS

Using machine learning, we identified key factors related to self-reported enthusiasm for the future in a large sample of young students: perceived physical health, subjective school social status and connectedness, and quality of relationship with parents. A focus on perceptions of physical health and school connectedness should be considered central to improving the well-being of youth at the population level.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3