Improving Triage Accuracy in Prehospital Emergency Telemedicine: Scoping Review of Machine Learning–Enhanced Approaches (Preprint)

Author:

Raff DanielORCID,Stewart KurtisORCID,Yang Michelle ChristieORCID,Shang JessieORCID,Cressman SonyaORCID,Tam RogerORCID,Wong JessicaORCID,Tammemägi Martin CORCID,Ho KendallORCID

Abstract

BACKGROUND

Prehospital telemedicine triage systems combined with machine learning (ML) methods have the potential to improve triage accuracy and safely redirect low-acuity patients from attending the emergency department. However, research in prehospital settings is limited but needed; emergency department overcrowding and adverse patient outcomes are increasingly common.

OBJECTIVE

In this scoping review, we sought to characterize the existing methods for ML-enhanced telemedicine emergency triage. In order to support future research, we aimed to delineate what data sources, predictors, labels, ML models, and performance metrics were used, and in which telemedicine triage systems these methods were applied.

METHODS

A scoping review was conducted, querying multiple databases (MEDLINE, PubMed, Scopus, and IEEE Xplore) through February 24, 2023, to identify potential ML-enhanced methods, and for those eligible, relevant study characteristics were extracted, including prehospital triage setting, types of predictors, ground truth labeling method, ML models used, and performance metrics. Inclusion criteria were restricted to the triage of emergency telemedicine services using ML methods on an undifferentiated (disease nonspecific) population. Only primary research studies in English were considered. Furthermore, only those studies using data collected remotely (as opposed to derived from physical assessments) were included. In order to limit bias, we exclusively included articles identified through our predefined search criteria and had 3 researchers (DR, JS, and KS) independently screen the resulting studies. We conducted a narrative synthesis of findings to establish a knowledge base in this domain and identify potential gaps to be addressed in forthcoming ML-enhanced methods.

RESULTS

A total of 165 unique records were screened for eligibility and 15 were included in the review. Most studies applied ML methods during emergency medical dispatch (7/15, 47%) or used chatbot applications (5/15, 33%). Patient demographics and health status variables were the most common predictors, with a notable absence of social variables. Frequently used ML models included support vector machines and tree-based methods. ML-enhanced models typically outperformed conventional triage algorithms, and we found a wide range of methods used to establish ground truth labels.

CONCLUSIONS

This scoping review observed heterogeneity in dataset size, predictors, clinical setting (triage process), and reported performance metrics. Standard structured predictors, including age, sex, and comorbidities, across articles suggest the importance of these inputs; however, there was a notable absence of other potentially useful data, including medications, social variables, and health system exposure. Ground truth labeling practices should be reported in a standard fashion as the true model performance hinges on these labels. This review calls for future work to form a standardized framework, thereby supporting consistent reporting and performance comparisons across ML-enhanced prehospital triage systems.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3